问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

高中数学立体几何

发布网友 发布时间:2022-04-22 05:04

我来回答

4个回答

热心网友 时间:2024-06-03 19:41

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

热心网友 时间:2024-06-03 19:42

立体几何
数学上,立体几何(Solid geometry)是3维欧氏空间的几何的传统名称—- 因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。立体测绘(Stereometry)处理不同形体的体积的测量问题:圆柱,圆锥, 锥台, 球, 棱柱, 楔, 瓶盖等等。 毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
高中立体几何知识点

1.直线在平面内的判定
(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.
(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则AB∈α
(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则a∈α.
(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若P∈α,P∈β,β不平行α,P∈a,a∥α,则a∈β.
(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a包含于α,A∈α,A∈b,b∥a,则b包含于α.
2.存在性和唯一性定理
(1)过直线外一点与这条直线平行的直线有且只有一条;
(2)过一点与已知平面垂直的直线有且只有一条;
(3)过平面外一点与这个平面平行的平面有且只有一个;
(4)与两条异面直线都垂直相交的直线有且只有一条;
(5)过一点与已知直线垂直的平面有且只有一个;
(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;
(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;
(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.
3.射影及有关性质
(1)点在平面上的射影:自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.
(2)直线在平面上的射影:自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.
(3)图形在平面上的射影:一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形.
(4)射影的有关性质:从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短.
4.空间中的各种角等角定理及其推论定理
若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角
(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.
(2)取值范围:0°<θ≤90°.
(3)求解方法根据定义,通过平移,找到异面直线所成的角θ;解含有θ的三角形,求出角θ的大小.
5.直线和平面所成的角
(1)定义 和平面所成的角有三种:(i)垂线 面所成的角 的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角 直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面内,则它们所成的角是0°的角.
(2)取值范围0°≤θ≤90°
(3)求解方法作出斜线在平面上的射影,找到斜线与平面所成的角θ.解含θ的三角形,求出其大小.最小角定理斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角.
6.二面角及二面角的平面角
(1)半平面 直线把平面分成两个部分,每一部分都叫做半平面.
(2)二面角 条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°
(3)二面角的平面角以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,PCD是二面角α-AB-β的平面角.平面角PCD的大小与顶点C在棱AB上的位置无关.二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCDα,平面PCDβ.③找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法(iii)三垂线法()根据特殊图形的性质
(4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.利用面积射影定理S′=S·cosα其中S为二面角一个面内平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.利用异面直线上两点间的距离公式求二面角的大小.
7.空间的各种距离点到平面的距离
(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.
(2)求点面距离常用的方法:
1)直接利用定义求找到(或作出)表示距离的线段;抓住线段(所求距离)所在三角形解之.
2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.
3)体积法其步骤是:在平面内选取适当三点,和已知点构成三棱锥;求出此三棱锥的体积V和所取三点构成三角形的面积S;由V=S·h,求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.
4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.
8.直线和平面的距离
(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.
(2)求线面距离常用的方法直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.将线面距离转化为点面距离,然后运用解三角形或体积法求解之.作辅助垂直平面,把求线面距离转化为求点线距离.
9.平行平面的距离
(1)定义 个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.
(2)求平行平面距离常用的方法直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之.
10.异面直线的距离
(1)定义 条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.
(2)求两条异面直线的距离常用的方法定义法 题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.转化法 为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法

热心网友 时间:2024-06-03 19:42

连接MF,证明直线EM垂直面BMF即可(要先证BM垂直于面acef,再推出BM垂直EM,还有利用边长计算证明EM垂直MF)。第二题利用第一题条件,v=EM*S(BMF)*1/3即可追问有没有详细过程?能不能拿纸写下来,谢谢

热心网友 时间:2024-06-03 19:43

(1)
因为EA⊥平面ABC,所以EA⊥MB;
因为EA、FC都⊥平面ABC,所以E、A、C、F构成一个平面;
因为MB⊥AC,AC与AE相交,所以MB⊥平面EACF;所以MB⊥ME;
因为直径所对应的圆周角为90°,所以角ABC为直角;

因为∠BAC=30°、AC=4、AC=3、CF=1、BM⊥AC,所以BC=2,AB=2√3,BM=√3,AM=3,CM=1;
因为CF=CM=1、CF⊥CM,所以∠CMF=45°;
因为AE=AM=3、AE⊥AM,所以∠AME=45°;
所以∠EMF=90°,所以EM⊥MF;
因为ME⊥MB且EM⊥MF,所以EM垂直平面BFM,所以EM⊥BF;(第一题证明结束)
(2)EM=3√,2,FM=√2,BM=√3
所以V=1/3×(1/2×BM×FM)×EM=√3;(第二题结束)
高一立体几何在哪本课本里?

必修和选修都有,必修2第一章是立体几何初步,第二章解析几何初步中只讲了空间坐标系。选修2-1(理科书)的第三章。空间向量与立体几何考点 (1) 以向量为载体,运用向量的线性运算尤其是数量积的应用、证明平行、垂直等问题,以各种题型,尤其以解答题为主进行考查,利用空间向量数量积求解相应几何问题...

高中数学空间向量与立体几何思维导图

关于高中数学空间向量与立体几何思维导图如下:数学上,立体几何(Solid geometry)是3维欧氏空间的几何的传统名称—-因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。立体测绘(Stereometry)处理不同形体的体积的测量问题:圆柱,圆锥,锥台,球,棱柱,楔,瓶盖等等。毕达哥拉斯学派就处...

高中数学空间向量与立体几何

2.空间向量与几何图形:学习空间向量在平面、直线、圆、球、多面体等几何图形中的应用,如求解距离、角度、长度等问题。3.立体几何基本概念:了解立体几何中的基本概念,如点、线、面、平面、直线、角、圆、球、多面体等;掌握它们之间的关系和性质。4.立体几何与空间向量:学习如何利用空间向量解决立体几...

如何快速记住高中数学的立体几何公式?

高中立体几何所有公式如下:1、正方体a-边长S=6a2;V=a3。2、长方体a-长;b-宽;c-高;S=2(ab+ac+bc);V=abc。3、圆柱r-底半径;h-高;C—底面周长;S底—底面积;S侧—侧面积。S表—表面积,C=2πr,S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h。4、空心圆柱R-...

立体几何是必修几学的 立体几何是数学必修几

立体几何是人教版教材高中必修二所学的内容。高中(Seniorhighschool),是高级中学的简称,我国中学分为初级中学与高级中学,两者同属中等教育的范畴。高级中学是我国九年义务教育结束后更高等的教育机构,上承初中,下启大学,一般为三年制。中国的高中阶段教育包括:普通高级中学、普通中等专业学校、成人...

高中立体几何体积公式

高中立体几何体积公式如下:六棱柱宽祥埋体积计算公式:V=Sh。S为底面积,h为高。正六边形面积S=6×正三角形面积=(3√3/2)a²,a为正六边形的边长。底面为正六边形,且六个侧棱均与底面垂直。正六棱柱的体积公式为底面积与高的乘积:体积公式是用于计算体积的公式。即计算各种几何体体积的...

高中数学立体几何怎么学好

高中数学立体几何学习方法 第一要建立空间观念,提高空间想象力。从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角...

高中数学之纲:立体几何的公理与主要定理

『公理1』 如果一条直线上的两点在同一个平面内,那么这条直线在这个平面内。『公理2』 过不在一条直线上的三点,有且只有一个平面。换言之:不共线的三点决定一个平面。『公理3』 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。『公理4』 空间平行...

学高中数学的立体几何很吃力,怎么提高空间想象能力?

对于高中数学来说,立体几何并不少见,考试也是保证不丢分的一部分。解决问题的方法有两种,几何和向量。几何,这需要更多的练习,他们应该有空间想象力,必须非常熟悉点、线、表面之间的关系,记住那些定理,并能熟练地应用。再次强调,你必须多练习。向量法,可以说用这种方法不怎么动脑筋,在确定零点建立...

高中数学立体几何部分知识点

高中数学立体几何知识点一 数学知识点1、柱、锥、台、球的结构特征 (1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比...

立体几何公式总结图片 高中数学立体几何压轴题 高中数学选择性必修三立体几何 高中数学立体几何试卷及答案 高中数学立体图形公式画图 高中数学立体几何知识点总结 立体几何经典例题30道及答案 高中数学必修二立体几何题目 高中数学立体几何证明公式
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
关于macbook pro无线上网的问题 苹果macbook pro怎么上网? 大理两日游,如何合理安排住宿? 大理五日游,如何安排住宿比较合理? 去大理旅游该怎么挑性价比高的民宿? 铠侠256G高速TF卡,轻松搞定Switch和微软surface Pro扩容 双子双鱼是什么意思啊? 日双鱼 月双子的人什么性格 抖音私信删除之后还能查到吗? 人民币小写符号"¥"怎么读? 法国运动鞋都有什么品牌,越多越好! 高中的立体几何真的有那么难吗? 法公鞋是几线品牌 高中数学立体几 hoka是什么牌子? 高中立体几何是必修几的内容 韭菜馅水饺可以冰冻吗? 为什么灯泡放进嘴里就拿不出来? 为什么电灯泡塞嘴里以后,就很难拿出来了? 灯泡为什么放嘴巴里拿不出来 电灯泡吞进嘴里为什么取不出来? 韭菜馅冻了还能吃吗 为什么灯泡含嘴里就拿不出来了? 为什么灯泡放进嘴里出不来了? 韭菜馅饺子能冻吗 为什么普通的白炽灯泡可以放进嘴巴却拿不出来? 为什么灯泡能进入人的嘴,但却出不来 为什么灯泡放到嘴里就拿不出来了? 为什么灯泡放嘴里拿不出来? 灯泡能塞进嘴里,但是却不好往外拿,这是为啥? NELLEN是什么牌子的鞋好吗 数学题目高中立体几 高中数学立体几何怎么学?我有点恐惧 求高人指点 hoka品牌介绍是什么? 高中数学立体几合该怎么学? AIFENABERMQUNEEN鞋子是什么牌子 怎么学好高中立体几何 高中立体几何 CuyLaroche鞋子是什么牌子 求高中数学立体几何的一些概念 国际运动鞋品牌有那些? 高中数学中的立体几何 兰研鞋子属于什么档次 高中立体几何。 高中立体几何都有哪些重点 SEULAE是什么品牌? 领舞者运动鞋是那国的品牌? 高中数学立体几何``` 为什么我写的页面 在微信上 图片长按没有反应? 球鞋品牌哪些值得推荐?