问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

工程问题的例题解析

发布网友 发布时间:2022-04-22 04:20

我来回答

1个回答

热心网友 时间:2024-01-26 18:16

.当知道了两者工作效率之比,从比例角度考虑问题,也可以灵活解答。
因此,在下面例题的讲述中,不完全采用通常教科书中“把工作量设为整体1”的做法,而偏重于“整数化”或“从比例角度出发”,也许会使我们的解题思路更灵活一些.
一、两个人的问题
标题上说的“两个人”,也可以是两个组、两个队等等的两个集体.
●例1一件工作,甲做9天可以完成,乙做6天可以完成。现在甲先做了3天,余下的工作由乙继续完成,乙需要做几天可以完成全部工作?
解一:把这件工作看作1,甲每天可完成这件工作的九分之一,做3天完成的1/3。
乙每天可完成这件工作的六分之一,(1-1/3)÷1/6=4(天)
答:乙需要做4天可完成全部工作.
解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是
(18- 2 × 3)÷ 3= 4(天).
解三:甲与乙的工作效率之比是
6∶ 9= 2∶ 3.
甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天).
●例2一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?
解:共做了6天后,
原来,甲做 24天,乙做 24天,
现在,甲做0天,乙做40=(24+16)天.
这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率是乙工作效率的(倍)
甲做6天相当于乙做(天),
如果乙独做,所需时间是 6+4+40=50天。
如果甲独做,所需时间是天
答:甲或乙独做所需时间分别是75天和50天.
●例3某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成。现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?
解:先对比如下:
甲做63天,乙做28天;
甲做48天,乙做48天.
就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的工作效率
是乙工作效率的(倍).
甲先单独做42天,比63天少做了63-42=21(天),
相当于乙要做(天)
因此,乙还要做
28+28= 56(天).
答:乙还需要做56天。
●例4一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间?
解一:甲队单独做8天,乙队单独做2天,共完成工作量
余下的工作量是两队共同合作的,需要的天数是
2+8+ 1= 11(天).
答:从开始到完工共用了11天.
解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作
(30- 3 × 8- 1× 2)÷(3+1)= 1(天).
解三:甲队做1天相当于乙队做3天.
在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要做2×3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量.
4=3+1,
其中3天可由甲队1天完成,因此两队只需再合作1天.
解四:
方法:分休合想(题中说甲乙两队没有在一起休息,我们就假设他们在一起休息.)
甲队每天工作量为1/10,乙为1/30,因为甲休息了2天,而乙休息了8天,因为8>2,所以我们假设甲休息两天时,乙也在休息。那么甲开始工作时,乙还要休息:8-2=6(天)那么这6天内甲独自完成了这项工程的1/10×6=6/10,剩下的工作量为1-6/10=4/10,而这剩下的4/10为甲乙两人一起合作完成的工程量,所以,工程量的4/10 需要甲乙合作:(4/10)÷(1/10+1/30)=3天。所以从开始到完工共需:8+3=11(天)
●例5一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?
解一:如果16天两队都不休息,可以完成的工作量是 (1÷20)×16+(1÷30)×16=4/3
由于两队休息期间未做的工作量是4/3-1=1/3
乙队休息期间未做的工作量是 1/3-1/20×3=11/60
乙队休息的天数是 11/60÷(1/30)=11/2
答:乙队休息了5天半.
解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份.
两队休息期间未做的工作量是
(3+2)×16- 60= 20(份).
因此乙休息天数是
(20- 3 × 3)÷ 2= 5.5(天).
解三:甲队做2天,相当于乙队做3天.
甲队休息3天,相当于乙队休息4.5天.
如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是
16-6-4.5=5.5(天).
●例6有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?
解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.
设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份.
8天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要
(60-4×8)÷(4+3)=4(天).
8+4=12(天).
答:这两项工作都完成最少需要12天.
●例7一项工程,甲独做需10天,乙独做需15天,如果两人合作,甲的工效就会降低20%,乙的工效也会降低 10%。他们要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?
解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份.
两人合作,共完成
3× 0.8 + 2 × 0.9= 4.2(份).
因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是
(30-3×8)÷(4.2-3)=5(天).
很明显,最后转化成“鸡兔同笼”型问题.
●例8甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时快
如果这件工作始终由甲一人单独来做,需要多少小时?
解:乙6小时单独工作完成的工作量是
乙每小时完成的工作量是
两人合作6小时,甲完成的工作量是
甲单独做时每小时完成的工作量
甲单独做这件工作需要的时间是
答:甲单独完成这件工作需要33小时.
这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便. 例8就是如此.例8也可以整数化,当求出乙每
有一点方便,但好处不大.不必多此一举.
二、多人的工程问题
我们说的多人,至少有3个人,当然多人问题要比2人问题复杂一些,但是解题的基本思路还是差不多.
●例9一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?
解:设这件工作的工作量是1.
甲、乙、丙三人合作每天完成
减去乙、丙两人每天完成的工作量,甲每天完成
答:甲一人独做需要90天完成.
例9也可以整数化,设全部工作量为180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完成3份.请试一试,计算是否会方便些?
●例10一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?
解:甲做1天,乙就做3天,丙就做3×2=6(天).
说明甲做了2天,乙做了2×3=6(天),丙做2×6=12(天),三人一共做了
2+6+12=20(天).
答:完成这项工作用了20天.
本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了
●例11一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天?
解:丙2天的工作量,相当乙4天的工作量.丙的工作效率是乙的工作效率的4÷2=2(倍),甲、乙合作1天,与乙做4天一样.也就是甲做1天,相当于乙做3天,甲的工作效率是乙的工作效率的3倍.
他们共同做13天的工作量,由甲单独完成,甲需要
答:甲独做需要26天.
事实上,当我们算出甲、乙、丙三人工作效率之比是3∶2∶1,就知甲做1天,相当于乙、丙合作1天.三人合作需13天,其中乙、丙两人完成的工作量,可转化为甲再做13天来完成.
●例12某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作?
解一:设这项工作的工作量是1.
甲组每人每天能完成
乙组每人每天能完成
甲组2人和乙组7人每天能完成
答:合作3天能完成这项工作.
解二:甲组3人8天能完成,因此2人12天能完成;乙组4人7天能完成,因此7人4天能完成.
现在已不需顾及人数,问题转化为:
甲组独做12天,乙组独做4天,问合作几天完成?
小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数.
●例13制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?
解一:仍设总工作量为1.
甲每天比乙多完成
因此这批零件的总数是
丙车间制作的零件数目是
答:丙车间制作了4200个零件.
解二:10与6最小公倍数是30.设制作零件全部工作量为30份.甲每天完成 3份,甲、乙一起每天完成5份,由此得出乙每天完成2份.
乙、丙一起,8天完成.乙完成8×2=16(份),丙完成30-16=14(份),就知
乙、丙工作效率之比是16∶14=8∶7.
已知
甲、乙工作效率之比是 3∶2= 12∶8.
综合一起,甲、乙、丙三人工作效率之比是
12∶8∶7.
当三个车间一起做时,丙制作的零件个数是
2400÷(12- 8) × 7= 4200(个).
●例14搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?
解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是
答:丙帮助甲搬运3小时,帮助乙搬运5小时.
解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4.
三人共同搬完,需要
60 × 2÷ (6+ 5+ 4)= 8(小时).
甲需丙帮助搬运
(60- 6× 8)÷ 4= 3(小时).
乙需丙帮助搬运
(60- 5× 8)÷4= 5(小时).
三、水管问题
从数学的内容来看,水管问题与工程问题是一样的.水池的注水或排水相当于一项工程,注水量或排水量就是工作量.单位时间里的注水量或排水量就是工作效率.至于又有注入又有排出的问题,不过是工作量有加有减罢了.因此,水管问题与工程问题的解题思路基本相同.
例15 甲、乙两管同时打开,9分钟能注满水池.现在,先打开甲管,10分钟后打开乙管,经过3分钟就注满了水池.已知甲管比乙管每分钟多注入0.6立方米水,这个水池的容积是多少立方米?
解:甲每分钟注入水量是 :(1-1/9× 3)÷10=1/15
乙每分钟注入水量是:1/9-1/15=2/45
因此水池容积是:0.6÷(1/15-2/45)=27(立方米)
答:水池容积是27立方米.
例16 有一些水管,它们每分钟注水量都相等.现在打开其中若干根水管,经过预定的时间的,再把打开的水管增加一倍,就能按预定时间注满水池,如果开始时就打开10根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根水管?
分析:增开水管后,有原来2倍的水管,注水时间是预定时间的1-1/3=2/3,2/3是1/3的2倍,因此增开水管后的这段时间的注水量,是前一段时间注水量的4倍。 设水池容量是1,前后两段时间的注水量之比为:1:4,
那么预定时间的1/3(即前一段时间)的注水量是1/(1+4)=1/5。
10根水管同时打开,能按预定时间注满水,每根水管的注水量是1/10,预定时间的1/3,每根水管的注水量是1/10×1/3=1/30
要注满水池的1/5,需要水管1/5÷1/30=6(根)
解:前后两段时间的注水量之比为:1:[(1-1/3)÷1/3×2]=1:4
前段时间注水量是:1÷(1+4)=1/5
每根水管在预定1/3的时间注水量为:1÷10×1/3=1/30
开始时打开水管根数:1/5÷1/30=6(根)
答:开始时打开6根水管。
例17蓄水池有甲、丙两条进水管,和乙、丁两条排水管.要灌满一池水,单开甲管需3小时,单开丙管需要5小时.要排光一池水,单开乙管需要 4小,丁管需要6小时,现在水池内有六分之一的水,如按甲、乙、丙、丁、甲、乙……的顺序轮流打开1小时,问多少时间后水开始溢出水池?
分析:
此题与广为流传的“青蛙爬井”是相仿的:一只掉进了枯井的青蛙,它要往上爬30尺才能到达井口,每小时它总是爬3尺,又滑下2尺.问这只青蛙需要多少小时才能爬到井口?
看起来它每小时只往上爬3- 2= 1(尺),但爬了27小时后,它再爬1小时,往上爬了3尺已到达井口.
因此,答案是28小时,而不是30小时. 以后(20小时),池中的水已有,否则开甲管的过程中水池里的水就会溢出.
例18一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?
解:先计算1个水龙头每分钟放出水量.
2小时半比1小时半多60分钟,多流入水
4 × 60= 240(立方米).
时间都用分钟作单位,1个水龙头每分钟放水量是
240 ÷ ( 5× 150- 8 × 90)= 8(立方米),
8个水龙头1个半小时放出的水量是
8 × 8 × 90,
其中 90分钟内流入水量是 4 × 90,因此原来水池中存有水 8 × 8 × 90-4 × 90= 5400(立方米).
打开13个水龙头每分钟可以放出水8×13,除去每分钟流入4,其余将放出原存的水,放空原存的5400,需要
5400 ÷(8 × 13- 4)=54(分钟).
答:打开13个龙头,放空水池要54分钟.
水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.
例19一个水池,地下水从四壁渗入池中,每小时渗入水量是固定的.打开A管,8小时可将满池水排空,打开C管,12小时可将满池水排空.如果打开A,B两管,4小时可将水排空.问打开B,C两管,要几小时才能将满池水排空?
解:设满水池的水量为1.
A管每小时排出
A管4小时排出
因此,B,C两管齐开,每小时排水量是
B,C两管齐开,排光满水池的水,所需时间是
答: B, C两管齐开要 4 小时 48分才将满池水排完.
本题也要分开考虑,水池原有水(满池)和渗入水量.由于不知具体数量,像工程问题不知工作量的具体数量一样.这里把两种水量分别设成“1”.但这两种量要避免混淆.事实上,也可以整数化,把原有水设为8与12的最小公倍数24.
17世纪英国伟大的科学家牛顿曾写过《普遍算术》一书,书中提出了一个“牛吃草”问题,这是一道饶有趣味的算术题.从本质上讲,与例18和例19是类同的.题目涉及三种数量:原有草、新长出的草、牛吃掉的草.这与原有水量、渗入水量、水管排出的水量,是完全类同的.
例20有三片牧场,场上草长得一样密,而且长得一样快。12头牛4星期吃完第一块牧场上的草;7头牛9星期吃完第二片牧场的草.问多少头牛18星期才能吃完第三片牧场的草?
解:吃草总量=一头牛每星期吃草量×牛头数×星期数.根据这一计算公式,可以设定“一头牛每星期吃草量”作为草的计量单位.
原有草+4星期新长的草=12×4.
原有草+9星期新长的草=7×9.
由此可得出,每星期新长的草是
(7×9-12×4)÷(9-4)=3.
那么原有草是
7×9-3×9=36(或者12×4-3×4).
对第三片牧场来说,原有草和18星期新长出草的总量是
这些草能让
90×7.2÷18=36(头)
牛吃18个星期.
答:36头牛18个星期能吃完第三片牧场的草.
例20与例19的解法稍有一点不一样.例20把“新长的”具体地求出来,把“原有的”与“新长的”两种量统一起来计算.事实上,如果例19再有一个条件,例如:“打开B管,10小时可以将满池水排空.”也就可以求出“新长的”与“原有的”之间数量关系.但仅仅是例19所求,是不需要加这一条件.好好想一想,你能明白其中的道理吗?
“牛吃草”这一类型问题可以以各种各样的面目出现.限于篇幅,我们只再举一个例子.
例21画展9点开门,但早有人排队等候入场.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,9点9分就不再有人排队,如果开5个入场口,9点5分就没有人排队.问第一个观众到达时间是8点几分?
解:设一个入场口每分钟能进入的观众为1个计算单位.
从9点至9点9分进入观众是3×9,
从9点至9点5分进入观众是5×5.
因为观众多来了9-5=4(分钟),所以每分钟来的观众是
(3×9-5×5)÷(9-5)=0.5.
9点前来的观众是
5×5-0.5×5=22.5.
这些观众来到需要
22.5÷0.5=45(分钟).
答:第一个观众到达时间是8点15分.
挖一条水渠,甲、乙两队合挖要六天完成。甲队先挖三天,乙队接着挖一天,可挖这条水渠的3/10,两队单独挖各需几天?
分析: 甲乙合作1天后,甲又做了2天共3/10-1/6=4/30
2÷(3/10-1/6)
=2÷4/30
=15(天)
1÷(1/6-1/15)=10(天)
答:甲单独做要15天,乙单独做要10天 .
.一件工作,如果甲单独做,那么甲按规定时间可提前2天完成,乙则要超过规定时间3天才完成。现在甲乙二人合作二天后,剩下的乙单独做,刚好在规定日期内完成。若甲乙二人合作,完成工作需多长时间?
解设:规定时间为X天.(甲单独要X-2天,乙单独要X+3天,甲一共做了2天,乙一共做了X天)
1/(X-2)×2 + X/(X+3)=1
X=12
规定要12天完成
1÷[1/(12-2)+1/(12+3)]
=1÷(1/6)
=6天
答:两人合作完成要6天. 例:一项工程,甲单独做63天,再由乙做28天完成,甲乙合作需要48天完成。甲先做42天,乙做还要几天? 答:设甲的工效为x,乙的工效为y
63x+28y=1
48x+48y=1
x=1/84
y=1/112
乙还要做(1-42/84)÷(1/112)=56(天)
例22有32吨货物,从甲城运往乙城,大卡车的载重量是5吨,小卡车的载重量是3吨,每种大、小卡车的耗油量分别是10升和7.2升,将这批货物运完,至少需要耗油多少吨?
解:显然,为了省油,应尽量使用大卡车运,大卡车运6次,还剩2吨,所以剩下一次用小卡车运,耗油最少,共需6*10+7.2=67.2升

今年国考的行测工程问题

工程问题目前是每年国家公务员考试中的常见题型,属于有章可循类型,这要求你备考时应给予此类题充分重视,以便在考试时能快速准确解出,取得相应分数。首先明确什么类型题目为工程问题,即涉及到工作总量=工作效率×工作时间这三个量的数学运算题。接下来就工程问题多者合作常用到特值法进行讲解。两者或者两...

工程问题六年级数学解题技巧公式

工程问题六年级数学解题技巧公式如下:1、工作量=工作效率 x 工作时间。2、工作时间=工作量÷工作效率。3、工作时间=总工作量÷(甲工作效率+乙工作效率)。相关例题:1、一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?解题思路...

什么是工程问题?请举例.

工程问题是应用题中一种较难的题型之一,也是综合考察学生分析能力的重要题型之一。一、简单的工程问题例1.一批零件,如果由甲来加工,需要10天,如果由乙来加工,需要20天。若由两人一起来加工,需要多少天?解析:这里工程问题的工作总量就是这批零件,没有具体的数量,所以可以设为1,工作时间是知道的,甲为1...

行测:工程问题的解题技巧有哪些

例1.一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天。甲、乙、丙三人共同完成该工程需多少天( )。A.8天 B.9天 C.10天 D.12天【答案】C。解析:设工作总量为90,则甲的效率为3,甲、乙的效率和为5,乙、丙效率和为6。那么乙的效率为2,丙的效率为4。甲乙丙...

公考行测~数量关系之工程问题

题型识别:1. 几个人完成几项工程;2. 蓄水池注水。遇到描述几个人在一段时间内完成工作或者涉及到水池注水、放水的题目,通常判断为工程问题。基本公式:工作总量 = 工作时间 × 工作效率。解题思路:1. 已知工作时间:赋予工作总量为时间公倍数的值,计算各自的工作效率,然后根据题目要求进行计算(...

数学工程问题解题技巧

解析:本题答案选A。由题意可设甲、乙、丙每日工作量分别为6、5、4,丙队参与A工程x天。根据A、B工作量相同列方程,6×16+4x=5×16+4×(16-x),解得x=6。工程问题中常用特值法,经常将工作量设为“1”,但是特值法应该灵活使用,这样是为了简化计算。两人或多人合作后,有可能会出现...

一元一次方程工程问题的解题技巧

一、工程问题涉及的量及基本工具。【涉及的量】工作效率、工作时间、工作量。【基本工具】工作量=工作效率×工作时间。二、两种思路。【思路1】按段找相等关系。第1段的工作量+第2段的工作量=总工作量。【思路2】按人找相等关系。甲的工作量+乙的工作量=总工作量。三、典型例题 【例1】某项工作...

数量关系备考干货—工程问题的深度解析

接下来讲解效率制约型工程问题,我们依然需要使用W=P×T这个公式,但是不同的是,要赋值的量是工作效率,赋它为一个具体的数值。下面通过一道例题来感受下。【例2】甲、乙、丙三人工作的效率比为7∶9∶8,现将A、B两项工作量相同的工程交给这三个人,甲负责A工程,乙负责B工程,丙作为机动...

工程问题的应用题例题讲析(奥数提升)

工程问题应用题例题讲析 例1:甲,乙两队开挖一条水渠.甲队单独挖要8天完成,乙队单独挖要12天完成.现在两队同时挖了几天后,乙队调走,余下的甲队在3天内完成.乙队挖了多少天 解:可以理解为甲队先做3天后两队合挖的.=3(天)例2:加工一批零件,甲单独做20天可以完工,乙单独做30天可以完工....

行测辅导:数学运算解题方法系列之工程问题

分析解答工程问题是,首先根据题目的特点,把工作总量用“1”来表示,而工作效率也就可用单位时间内可做工作总量的“几分之一”来表示。这里所指的工作总量,既可是全部工作量,也可以是部分工程量;这里所指的工作效率,既可以通过工作时间得到,也可以通过“工程”进展变化规律得到。总之,都要通过具体的...

工程问题的解题技巧 物理追击问题例题及解析 动点问题的例题 行程问题例题 初中追击相遇问题例题及解答 路程问题的应用题及答案 高一物理追及相遇问题的例题 工程问题应用题技巧 路程问题的应用题
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
我拉的大便一块一块的,球状,肚子里也是不太舒服。想上厕所,但是每次都... 马健南最好听的十首歌 烟台各个高中怎么样?有在校生帮忙解答下,今年中考 澳洲八大里面的澳国立、悉尼大学、昆士兰大学、新南威尔士,哪个更... 澳大利亚有哪些著名大学 澳大利亚有哪些名校 烟台二中的小实验班和烟台一中的大实验班哪个好? 椰子煲什么好 烟台二中和蓬莱一中哪个好??! 我升学!! 基因型文件格式转换 免费在线小工具-突变分析系列:突变注释信息 河南省商丘市民权县褚庙乡的邮政编码 真丝分种类,分等级吗?哪种真丝最好? 河南省民权县顺河乡王庄村邮政编码 初中所有应用题的分类 伊春飞机失事遇难名单 什么是工程问题?请举例. stm32 一般用在什么领域?用的公司和产品多吗?未来... 东航对MU5735空难遇难同胞如何补偿才能给予全社会... 工程问题怎么做?最好有例子 民权孙陆乡邮编 stm32类的mcu主要的应用场合有哪些 原神抽神里还是雷神 商丘民权县程庄镇邮政编码是多少 台湾58人坠机事件有山东潍坊的吗 原神2.6版本up池凌人和温迪那个好 河南省民权县龙塘镇邮政编码是多少 坠机核心区“平安扣”纸片或为直播女孩所留,这个女... 2.6有了公子应该抽神里还是温迪? 河南的邮政编码是什么? 轻音少女人物简介、 stm32单片机可以干什么 工程问题(解决问题) STM32是什么啊,是32位的单片机吗 工程问题如何解决 stm32开发板有什么用 工程问题,怎么做? 2002 大连空难 详细说一下 STM32单片机入门 工程问题解题思路 巴西官网新闻昨天坠机人员名单出来了吗 51/PIC/AVR/STM32单片机 初二工程问题 河南邮政编码是多少 STM32单片机 马航为什么失事 20个工程问题的应用题 20道工程问题及答案 河南省商丘市民权县胡集乡的邮编 STM32为何短短几年就占据了单片机的大半江山? 河南各个市区的邮编是多少?