为什么样本方差要除以n-1而群体方差要除以N?
发布网友
发布时间:2022-05-07 17:35
我来回答
共3个回答
热心网友
时间:2022-06-30 21:44
1.总体方差为σ2,均值为μ
S=[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]/(n-1)
X表示样本均值=(X1+X2+...+Xn)/n
设A=(X1-X)^2+(X2-X)^2....+(Xn-X)^2
E(A)=E[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]
=E[(X1)^2-2X*X1+X^2+(X2)^2-2X*X2+X^2+(X2-X)^2....+(Xn)^2-2X*Xn+X^2]
=E[(X1)^2+(X2)^2...+(Xn)^2+nX^2-2X*(X1+X2+...+Xn)]
=E[(X1)^2+(X2)^2...+(Xn)^2+nX^2-2X*(nX)]
=E[(X1)^2+(X2)^2...+(Xn)^2-nX^2]
而E(Xi)^2=D(Xi)+[E(Xi)]^2=σ2+μ2
E(X)^2=D(X)+[E(X)]^2=σ2/n+μ2 (为什么是N分之方差)
所以E(A)=E[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]
=n(σ2+μ2)-n(σ2/n+μ2)
=(n-1)σ2
所以为了保证样本方差的无偏性
S=[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]/(n-1)
E(S)=(n-1)σ2/(n-1)=σ2
2.自由度也可以解释,不是有n个与均值偏差的平方和吗?正好这n个表达式之和等于0,也就是说本来n维自由度的,受限于一个条件。所以变成了n-1维了。另外楼上说的无偏性最为根本,才是修正的根本原因。
热心网友
时间:2022-06-30 21:44
设A=(X1-X)^2+(X2-X)^2....+(Xn-X)^2
E(A)=E[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]
=E[(X1)^2-2X*X1+X^2+(X2)^2-2X*X2+X^2+(X2-X)^2....+(Xn)^2-2X*Xn+X^2]
=E[(X1)^2+(X2)^2...+(Xn)^2+nX^2-2X*(X1+X2+...+Xn)]
=E[(X1)^2+(X2)^2...+(Xn)^2+nX^2-2X*(nX)]
=E[(X1)^2+(X2)^2...+(Xn)^2-nX^2]
而E(Xi)^2=D(Xi)+[E(Xi)]^2=σ2+μ2
E(X)^2=D(X)+[E(X)]^2=σ2/n+μ2 (为什么是N分之方差)
所以E(A)=E[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]
=n(σ2+μ2)-n(σ2/n+μ2)
=(n-1)σ2
所以为了保证样本方差的无偏性
S=[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]/(n-1)
E(S)=(n-1)σ2/(n-1)=σ2
2.自由度也可以解释,不是有n个与均值偏差的平方和吗?正好这n个表达式之和等于0,也就是说本来n维自由度的,受限于一个条件。所以变成了n-1维了。另外楼上说的无偏性最为根本,才是修正的根本原因。
热心网友
时间:2022-06-30 21:44
楼上很明显是从哪儿复制过来的啊......
可以参考下这里
http://e.ce.cn/topic/ky/bk/sxfx/200611/16/W020061116392265531771.jpg
总体的方差肯定是要除以n的, 此外, 上面告诉你了对于样本方差除以n和n-1的效果, 以及优良性比较.