向量组线性相关的充要条件是什么?
发布网友
发布时间:2023-07-02 22:14
我来回答
共1个回答
热心网友
时间:2023-11-05 17:02
两个向量组可以互相线性表出,即是第一个向量组中的每个向量都能表示成第二个向量组的向量的线性组合,且第二个向量组中的每个向量都能表示成第一二个向量组的向量的线性组合。
向量组等价的基本判定是:两个向量组可以互相线性表示。
需要重点强调的是:等价的向量组的秩相等,但是秩相等的向量组不一定等价。
向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),
其中A和B是向量组A和B所构成的矩阵。
向量组等价和矩阵等价是两个不同的概念。前者是从能够互相线性表出的角度给出定义;后者是从初等变换的角度给出定义。向量组(必须包含向量个数相同)等价能够推出矩阵等价。但是矩阵等价不一定能推出向量组等价。
向量组等价,是两向量组中的各向量,都可以用另一个向量组中的向量线性表示。
矩阵等价,是存在可逆变换(行变换或列变换,对应于1个可逆矩阵),使得一个矩阵之间可以相互转化。
如果是行变换,相当于两矩阵的列向量组是等价的。
如果是列变换,相当于两矩阵的行向量组是等价的。
由于矩阵的行秩,与列秩相等,就是矩阵的秩,在行列数都相等的情况下,两矩阵等价实际上就是秩相等,反过来,在这种行列数都相等情况下,秩相等,就说明两矩阵等价。
向量组线性相关的充要条件是什么?
充要条件。证明:(充分性)若n阶方阵a的行列式等于零,则a的行(列)向量组的秩小于n,则a的行(列)向量组线性相关。(必要性)若a的行(列)向量组线性相关,则a的行(列)向量组的秩小于n,则n阶方阵a的行列式等于零。
线性代数向量组线性相关的充要条件是什么?
如果线性相关,也有可能三个成比例,四个成比例,只要满足r<m就行了,所以是充分非必要条件。如果向量组中有两个非零向量成比例则向量组线性相关所以A不对B是必要条件,因为如(1,0,1)T,(0,1,0)T,(1,1,1)T任意两个向量之间都不成比例,但是三个向量现行相关C是充要条件,用反证...
向量组线性相关的充要条件是什么?
条件:等价于AX=b这个方程有解。要理解一个问题,矩阵A实际上就是列向量组构成的,它与一个X向量相乘,得到的就是另外一个向量。也就说,这个向量可以被向量组A线性表示。向量组个该向量组成的矩阵的秩等于或小于向量组中向量的个数,取自定理:若向量组α1,α2...αn线性无关,且α1,α2.....
线性相关的充要条件是什么?
线性相关的充要条件是:向量组中至少存在一个向量可由其他向量线性表示。证明:必要性:假设向量组α1,α2,…,αm线性相关,则存在一组不全为零的数k1,k2,…,km,使得k1α1+k2α2+…+kmαm=0。特别地,k1≠0,那么α1=(-k2/k1)α2+(-k3/k1)α3+…+(-km/k1)αm,即α1可...
线性相关的充要条件是什么?
判断多个向量是否线性相关,主要看由向量组a,b,c组成的行列式|a,b,c|的值,如果值等于0就是线性相关,不等于0就是线性无关。只需要满足三个方程,6个未知数有无数个:假如只需要得到一个的话不妨令a=1,b=1,c=-2,m=1,n=-1 f=0即满足条件。故a2=(1,1,-2)T a3=(1,-1,0)...
线性相关的充要条件
线性相关的充要条件:1、对于任一向量组而言,不是线性无关的就是线性相关的。2、向量组只包含一个向量a时,a为0向量,则说A线性相关;若a≠0,则说A线性无关。3、包含零向量的任何向量组是线性相关的。在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称...
向量组线性相关的必要充分条件是什么?
Ax=0与Bx=0同解的充要条件是r(A)=r(B)=r(A;B)(A,B上下放置)。可以转化成方程组理解一下,r(A;B)=r(A)就说明以A为系数矩阵的方程组和以(A;B)为系数矩阵的方程组的约束条件数量一致,说明AX=0和BX=0两个方程组等价。即同解。这是充分性。必要性也一样可以通过方程组理解。线性...
线性代数 向量组线性相关的充要条件是什么
n个n维向量线性相关的充分必要条件是它们构成的行列式等于0 |α1;α2;α3;α4| = 按行向量构造行列式 2 2 4 a -1 0 2 b 3 2 2 c 1 6 7 d = 30(-a+b+c).所以向量组线性相关的充分必要条件是 a=b+c.
向量组线性相关的充要条件是向量个数大于向量维数吗?
因为以a,b,c,d列向量组成的矩阵是3行4列的,秩至多是3<4=向量个数,所以向量组线性相关。判除了用定义之外,用秩判断线性相关时,就是看秩是不是小于向量个数,小于就线性相关,等于就线性无关。理由如下:因为用定义判断的话,就是看齐次线性方程组(a1,a2,...,an)x=0是不是有非零解,...
线性相关的充要条件是什么?
向量a1,a2, ···,an(n≧2)线性相关的充要条件为这n个向量中的一个为其余(n-1)个向量的线性组合,一个向量线性相关的充分条件为它是一个零向量。一个向量组线性相关,则在相同位置处都去掉一个分量后得到的新向量组仍线性相关。若向量组所包含向量个数等于分量个数时,判定向量组是否线性...