发布网友 发布时间:2022-04-23 14:20
共1个回答
热心网友 时间:2023-07-29 15:36
7. 4. 1 2010 年水资源规划及规划模型优化的必要性
黄河水利委员会完成的 《黑河流域东部子水系各灌区 2010 年规划月数据表》 ( 张掖地区水电处提供) ,规划张临高灌区农灌、林草、高新技术的灌溉面积分别为 65. 82×104亩、83. 69×104亩、64. 37×104亩,分别占规划灌溉面积 ( 213. 88×104亩) 的 31%、39%、30%,其中渠灌面积 176. 16×104亩、井灌面积 37. 72×104亩; 农灌、林草、高新技术的灌溉用水量分别为 4. 74×108m3、4. 61×108m3、2. 43×108m3,分别占规划灌溉用水量 ( 11. 79×108m3) 的 40%、39%、21%,其中渠灌用水量8. 57×108m3,井灌用水量 3. 23×108m3。数据表明高新技术可大量节约水资源,高新技术 21%的用水可灌溉 30%的耕地,而传统灌溉方式 40%的用水仅灌溉 31%的耕地,效果是显著的。2010 年规划工业与生活需水量 1. 29×108m3,其中工业与城市生活用水主要集中在张临高三县市,分别为 0. 93×108m3、0. 13×108m3,农村人畜用水 0. 22×108m3。2010 年规划张掖地区工业与生活用水仅占总用水量( 13. 08×108m3) 的 10%,农业与生态用水占到总用水量的 90% ( 表 7. 13~表 7. 15) 。
黄河水利委员会 2010 年规划张掖地区总用水量为现状用水量 ( 17. 23×108m3) 的 76%,即规划实施后每年可节约水资源 4×108m3。但 2010 年规划在不同保证率来水量时,灌区灌溉用水量及正义峡河道分配水量能否满足,如何能最大限度地给予满足,以及对河水入渗、地下水溢出、河道径流有何影响等问题,是人们极为关注的问题,这些问题都能通过水资源规划模型优化得以解决。
7. 4. 2 规划模型的资料准备
水资源规划仅考虑近期 ( 2010 年) 不同保证率莺落峡来水量的各灌区用水量与正义峡河道下泄量等优化问题,2010 年规划数据与参数主要依据黄河水利委员会 《黑河流域东部子水系各灌区2010 年规划月数据表》 确定。
现状水平年 ( 1999 年) 干支斗渠有效利用系数和井水利用系数已比较高,2000 年和 2001 年渠系利用系数基本稳定、略有下降,考虑到地下水补给量逐年减少的实际情况,干支斗渠有效利用系数不宜再提高,故 2010 年渠井水有效利用系数取现状水平年的值,并依此确定 2010 年的灌溉定额; 2010 年灌溉面积不宜再扩大,应以现状灌溉面积为限量值; 地下水允许开采量应首先满足生活与工业用水,故农灌地下水可用水量为地下水允许开采量减去工业生活需水量,以此值为农灌开采量的限量值。
表 7. 13 2010 年规划农灌、林草、高新技术灌溉面积和用水量表
注: 农灌*指传统灌溉方式,不含高新技术灌溉。
表 7. 14 2010 年规划渠、井灌溉面积和用水量表
表 7. 15 2010 年规划工业与生活需水量表
表 7. 16 水资源规划模型 2010 年规划数据与参数表
水资源规划模型 2010 年规划数据与参数列入表 7. 16,规划模型所需灌区两季灌溉比例系数、现状干渠引水量 ( 限量值) 、现状地下水开采量与开采影响系数、现状地下水溢出量、不同保证率的河道来水量和径流量及正义峡分配水量 ( 限量值) 等数据与参数已列于表 7. 2~表 7. 7。
地下水溢出量目前仍处于衰减态势,根据数值模拟地下水溢出量 10 年衰减率在 4% ~12%之间,平均衰减率为 8%。现状地下水溢出量为 9. 15×108m3/ a ( 表 7. 7) ,规划年 ( 2010 年) 地下水溢出量按衰减率8%计算为8. 42×108m3/ a。规划年各区段溢出量与月溢出量可按表 7. 7 中的地下水溢出量乘以 0. 92 折算,并以此计算结果作为模型中的地下水溢出量 ( T) 参与水资源规划。
莺落峡到大桥之间河水入渗量按非线性统计关系计算,可将非线性方程分莺落峡—草滩庄—大桥两段直接写入河泉节点水量平衡方程。
7. 4. 3 规划模型优化结果与分析
将上述表列数据与参数按不同保证率代入水资源规划模型,运行规划模型可给出不同保证率的灌区用水、干渠引水、地下水溢出与河水入渗、河道径流和正义峡下泄等优化结果,并可进行各种来水量的水资源分析研究。
7. 4. 3. 1 人工绿洲 ( 灌区) 用水与干渠引水
2010 年各灌区用水与干渠引水优化结果列入表 7. 17、表 7. 18,绘制的分析曲线见图 7. 14 ~ 图7. 17。不同保证率的各灌区用水基本上均能满足,仅保证率 98% 的新华灌区年缺水 0. 32×108m3,规划面积由 14. 43×104亩减少为 9. 12×104亩,减少 37%; 新华灌区缺水的原因是梨园河来水不足,但保证率 98%的西干和甘浚两灌区还有地下水开采潜力 0. 385×108m3,可通过增开西干和甘浚两灌区地下水,将调剂出的西总干渠水量配送梨园河灌区,以满足新华灌区的灌溉需水量,这在技术上是可行的,但涉及灌区间行政隶属等方面的制约需要协调。可见实现黑河干流统一管理与调配水源 ( 包括地下水和地表水) ,对灌区用水、节水等都是非常重要的。
图 7. 14 2010 年灌区规划地下水开采量与渠道引水量曲线
图 7. 15 2010 年不同保证率地下水总开采量与渠道总引水量曲线
表 7. 17 2010 年灌区开采量与渠道引水量优化成果表
注: * 仅保证率 98%的新华规划面积为 9. 12×104亩,其他保证率和所有灌区规划均达到限量灌溉面积,开采量与引水量保证率 2%、10%、25%的规划结果与多年平均的规划结果相同。
表 7. 18 2010 年干渠引水量优化成果表
注: ZU 为引水限量扩大系数 ( ∞为无约束) ; 西总干渠 R10= 0. 5,R17= 0. 5; 同灌一个灌区或同地引水的干渠合并; 渠道引水量保证率 2%、10%、25%的规划结果同多年平均规划结果。
图 7. 16 2010 年干渠限量引水量与规划引水量曲线
图 7. 17 2010 年不同保证率干渠引水量曲线
中游地区灌区用水大户是张掖灌区,灌溉面积 102. 73×104亩,年用水量 ( 5. 66~5. 74) ×108m3,其中开采地下水 ( 0. 52 ~ 0. 99) ×108m3,渠道引水 ( 4. 67 ~ 5. 22) ×108m3,地下水占总用水的比例为 10%~17%,毛灌溉定额为 551~559m3/ 亩; 临泽灌区次之,灌溉面积 68. 55×104亩,年用水量 ( 3. 49~3. 84) ×108m3,其中开采地下水 ( 0. 38 ~ 0. 72) ×108m3,渠道引水 ( 2. 78~ 3. 46) ×108m3,地下水占总用水的比例为 25%左右,毛灌溉定额 509 ~ 561m3/ 亩; 高台灌区最小,灌溉面积 40. 07×104亩,年用水量 2. 31×108m3,其中开采地下水 ( 0. 90 ~ 0. 91) ×108m3,渠道引水 ( 1. 40 ~ 1. 41) × 108m3,地 下 水 占 总 用 水 的 比 例 高 达 61%,毛 灌 溉 定 额 576 ~577m3/ 亩。
高台灌区地下水用水比例高是其地处张临灌区下游的结果,张临灌区用水后因剩余河流水量不足迫使高台灌区增开地下水,这与张临高灌区的灌溉现实是吻合的; 尽管这是迫不得已的,但它对降低高台灌区过高的地下水位以减少蒸发消耗和改良盐碱地都是有益的,同时该河段地下水溢出量小,对整个河道溢出量的影响也较小。
各灌区地下水开采量与干渠引水量,保证率 2%、10%、25%的规划结果与多年平均的规划结果相同,平、枯水年 ( 保证率 50%~98%) 的规划结果有一定的差异,这种差异主要出现在西干和甘浚及梨园河灌区,是梨园河平、枯水年来水量小不能满足灌区需水量,通过加大西总干渠引水量进行水量调配的必然结果。模型中引入了限量扩大系数,但各干渠引水量基本未超过限量值,仅梨园河东、西干渠在多年平均及保证率 50%的引水量超过了限量值,这说明规划模型具有优先使用梨园河水的优化策略。不同保证率的灌区用水量基本稳定,模型利用地下水库调节功能,通过地表水与地下水的联合调配,实现了水资源的稳定利用。
7. 4. 3. 2 地下水溢出与河道径流
2010 年各河段地下水溢出 ( 负值为河水入渗) 与河道径流优化结果列入表 7. 19、表 7. 20,绘制的分析曲线见图 7. 18~图 7. 22。
不同保证率的河水入渗量变化较大,这与河水径流快、径流量变化大有关; 莺落峡来水量的保证率为 2%~98%时,对应莺落峡到大桥河水入渗量为 ( 4. 79~4. 03) ×108m3/ a,张掖盆地河水总入渗量为 ( 6. 09~4. 19) ×108m3/ a,河水入渗量均随保证率的提高而降低。不同保证率的地下水溢出量基本稳定,主要与地下水径流速度慢、补排的滞后性及储存量的调节作用等有关; 大桥到正义峡河段地下水溢出量 ( 7. 14 ~ 7. 53) × 108m3/ a,张掖 盆地地下水 总 溢 出 量 ( 8. 15 ~ 8. 54) ×108m3/ a。
地下水溢出量在不同河段变化很大,最大溢出段在大桥到塘湾河段,溢出量( 5. 71~6. 09) ×108m3/ a,占总溢出量的 71%; 最 小 溢 出 段 在 马尾 湖 到 正 义峡 河 段,溢 出 量 为 ( 0. 09 ~ 0. 10) ×108m3/ a,仅占总溢出量的 1. 2%; 地下水累积溢出量从大桥到正义峡沿河道呈现快速增长—慢速增长—极缓慢增长的变化特点。
表 7. 19 2010 年河流节点间地下水溢出量优化成果表
表 7. 20 2010 年河流节点径流量优化成果表
注: * 为已知数据,山丹河与九眼泉源头水量为 0。
图 7. 18 2010 年不同保证率地下水溢出量曲线
图 7. 19 2010 年地下水区间溢出量沿流程变化曲线
图 7. 20 2010 年地下水累积溢出量沿流程变化曲线
图 7. 21 2010 年不同保证率河道节点径流量过程线
图 7. 22 2010 年各河流节点径流量保证率线
不同保证率的河道径流量沿流程的变化规律基本一致,但河段的径流增长率或衰减率有一定的差异。莺落峡—大桥为河道径流快速减少河段,河道径流衰减率随保证率的提高而增大,草滩庄之上主要受渠道引水控制,径流衰减率较大,为 30%~69%; 草滩庄之下主要受河水渗失影响,衰减率相对较小,在 15%~52%之间。大桥—正义峡的河道径流受渠道引水与地下水溢出双重因素控制,因引水量与溢出量在不同河段的差异,使其影响下的河道径流呈现增长与衰减的交替变化规律; 大桥—塘湾河段,地下水溢出量远大于渠道引水量,河道径流呈较快增长变化,特别是大桥—高崖河段增长率高达 32%~282% ( 随保证率的提高而增加) ,高崖—塘湾河段增长率变化在2% ~ 6%之间; 塘湾—正义峡河段,因渠道引水量略大于地下水溢出量,河道径流总体呈慢速减少变化,其中塘湾—芦湾墩河段径流衰减率 1%~8%,芦湾墩—马尾湖河段径流衰减率 ( 或增长率)在零附近变化,马尾湖—正义峡河段径流衰减率为 1%~3%。
不同保证率河道径流沿流程的变化规律的一致性,反映了河道径流对来水量的依赖性; 河道径流量的变化体现的各影响因素强弱的变化,说明通过控制渠道引水可改变河道径流,当然改变河水入渗或地下水溢出同样会影响河道径流。
不同河流节点的径流量与保证率关系曲线的形态基本类同,河流节点径流量随保证率的提高均呈减少的变化特征,但各河流节点的平均减少率都有一定的差异,莺落峡、草滩庄、大桥、高崖、唐湾、芦湾墩、马尾湖、正义峡八个河流节点的减少率分别为 52%、78%、88%、65%、65%、65%、65%、66%。与莺落峡相比,其下游河流节点径流量的减少率有所增大,因不同保证率的河水入渗量与地下水溢出量变化不大,说明高保证率的河道径流受渠道引水影响更大,这是在枯水年份渠道引水时要特别注意的。
7. 4. 3. 3 正义峡河道下泄量
2010 年正义峡河道下泄量等优化结果列入表 7. 21、表 7. 22,绘制的分析曲线见图 7. 23 ~ 图7. 25。不同保证率的各期正义峡河道下泄量与其相应限量值 ( 即分配水量) 对比,全年所有保证率水平年的下泄量均能满足分配水量,多下泄 ( 0. 60~3. 73) ×108m3; 春夏灌期 ( A) 在保证率90%水平年的下泄量不能满足分配水量,少下泄 0. 12×108m3,其他保证率水平年均能满足分配水量,多下泄 ( 0. 10~3. 17) ×108m3; 夏冬灌期 ( B) 在保证率 50%水平年的下泄量不能满足分配水量,少下泄 0. 81×108m3,其他保证率水平年均能满足分配水量,多下泄 ( 0. 22 ~ 2. 84) ×108m3;非灌溉期 ( C) 所有保证率水平年的下泄量都不能满足分配水量,少下泄 ( 0. 59~1. 43) ×108m3。
表 7. 21 2010 年正义峡下泄量优化成果表
表 7. 22 2010 年不同保证率各期水量优化成果汇总表
正义峡全年下泄量能够满足分配水量,反映了张掖盆地节水规划 ( 即降低灌溉定额) 实施后是有明显效果的。灌溉期 ( A、B) 下泄量基本能满足分配水量,但不同保证率水平年的多下泄水量变化较大,说明莺落峡来水量年内水量变化的随机性对正义峡下泄量的年内分配有显著影响,这在水资源管理和统一调配时是要给予重视的; 可利用地下水库多年调节功能,通过多开或少开地下水消除来水量的随机变化给下泄量带来的影响,从理论上这是可行的,但实际操作是有难度的,涉及来水量的实时预报和下泄量的准确预测及调度等多方面的技术和管理工作。非灌溉期( C) 在所有保证率水平年的下泄量都不能满足分配水量,这可能与分水方案该期的分配水量设置“高”有关,因为这时期模型中没有设置干渠引水,河道下泄应为自然下泄; 事实上该期干渠仍有少量引水供平原水库蓄水,河道下泄量还会再少一些。
正义峡全年及灌溉期 ( A、B) 的下泄量总体上随保证率的提高而减少,但保证率 50%水平年的 A、B 两期下泄量出现了 “异常”,这是该水平年 A 期来水量较其他水平年偏高、B 期来水量较其他水平年偏低造成的,同样也说明了来水的年内变化对下泄有显著影响; 不同保证率的非灌溉期 ( C) 下泄量基本稳定,这与该期河道径流基本不受降水及渠道引水影响有关,下泄量基本反映了南部山区地下水泄出及张掖盆地地下水溢出在不同保证率水平年的变化情况。
图 7. 23 2010 年不同保证率正义峡下泄量与其限量对比曲线
图 7. 24 2010 年不同保证率正义峡各期下泄水量曲线
图 7. 25 2010 年各期不同保证率水量对比曲线
7. 4. 4 规划模型优化有关问题的讨论
7. 4. 4. 1 正义峡下泄量约束问题
模型中采用了 “全年与季节 ( A、B、C) 下泄量最大可能同时满足分水方案”的目标函数max = D1+D2,以及 “全年与季节下泄量至少有一个满足分水方案”的约束条件 D1+D2≥1。优化结果是在灌区灌溉需水量基本能够满足的情况下,丰水—枯水年的 0、1 决策变量 D1= 0、D2= 1,即仅能保证全年下泄量满足分水方案,不能保证季节下泄量满足分水方案。
如果采用 “全年与季节下泄量必须同时满足分水方案”的约束条件 D1+D2= 2,则规划模型在丰水—枯水年是无解的,因为 C 期的河道下泄水量无法满足分水方案; 如果进一步解除 C 期的约束 ( 即 C 期下泄量无约束) ,规划模型优化结果必然是 “全年与季节下泄量同时满足分水方案”,而灌区灌溉需水量在保证率 50%、90%水平年不能够全部满足及保证率 98%的新华灌区需水量不能满足,原因是保证率 50%、90%水平年的 A、B 两期莺落峡来水量出现了 “异常”及保证率98%的梨园河来水量不足。这些问题都可通过利用地下水库多年调节功能加以解决。
显然,只要去掉非灌溉期 ( C) 的正义峡下泄量的约束,规划模型优化结果基本上可同时满足灌区灌溉需水量及全年与灌溉期正义峡下泄分配水量。
7. 4. 4. 2 地下水溢出量衰减问题
模型是在现状 ( 1999 年) 地下水溢出量 ( 表 7. 7) 的基础上,按 10 年平均衰减率 8%折算溢出量进行 2010 年规划的,2010 年地下水溢出量较现状将减少 0. 73×108m3。
1999 年到 2010 年地下水补给量的变化受多种因素制约很难准确预测,故很难确切把握地下水溢出量变化的发展趋势。如果 1999~2010 年地下水补给量保持现状基本不变,而地下水溢出量仍是要衰减的,根据数值模拟计算 ( 表 4. 39) 2010 年地下水溢出量较现状减少 0. 35×108m3。事实上,补给量还可能将进一步减少,因此在规划模型中将地下水溢出量减少了 0. 73×108m3,尽管不很准确,但毕竟考虑了地下水补给量减少带来溢出量衰减的影响。
如果 1999~2010 年地下水补给量有很大的变化,将会对地下水溢出量产生显著的影响,其影响程度可参见 “补给量对溢出量的影响”( 表 4. 37) 。当未来补给量是增大的,无疑会对正义峡下泄量产生有益的影响; 当未来补给量是减小的,其对正义峡下泄量的影响将取决于减小的程度。2010 年规划的正义峡下泄量较分配水量有一定的余地,只要地下水溢出减少量不大,就不会对正义峡年下泄量产生大的影响,但会对年内各季下泄量产生较大影响。
实现水资源规划目标,不仅需要降低干渠 ( 灌区) 引水量,而且需要控制地下水溢出量的衰减,要从根本上控制地下水补给量的持续性减少,这些仍然是应引起高度重视,并积极采取有效措施而常抓不懈的工作。
7. 4. 4. 3 地下水库调节作用发挥问题
张掖盆地地下水库容积储存量巨大,含水层每 10m 厚度即储存地下水量 78×108m3( 面积7802km2、给水度 0. 1) ,具有很强的多年调节功能; 充分发挥地下水库的调节作用,可最大限度地满足灌区灌溉需水量,也可最大程度地保证正义峡河道下泄水量,使有限的水资源得以合理利用。
规划模型计算时长为 1 年,年内划为 3 个时段,规划模型各方案的优化结果,都在该时间尺度内已充分利用了地下水库的调节功能,将地表水与地下水作为一个整体互为补充、联合调度,使水资源得以充分而合理的利用,满足了规划的各方面要求,实现了规划预定目标。
受规划模型计算时长的*,对地下水库的多年调节功能未能得以发挥,也就出现了模型中水资源在个别保证率年、个别时段不能全部满足灌区灌溉需水量或正义峡夏冬灌期 ( B) 分配水量的情况; 这些因莺落峡来水量的随机性变化,使个别保证率年、个别时段出现的来水量 “异常”,都能通过加长规划模型计算时长,利用地下水库多年调节功能得以消减,从而全部满足灌区灌溉需水量或正义峡灌期 ( A、B) 分配水量。