泊松分布到底是什么??麻烦说清楚,泊松事件呢?
发布网友
发布时间:2022-05-27 04:15
我来回答
共1个回答
热心网友
时间:2023-10-08 17:19
概率论中常用的一种离散型概率分布。若随机变量 X 只取非负整数值,取k值的概率为λke-l/k!(记作P (k;λ),其中k可以等于0,1,2,则随机变量X 的分布称为泊松分布,记作P(λ)。这个分布是S.-D.泊松研究二项分布的渐近公式是时提出来的。泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差。在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率 λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布。因此泊松分布在管理科学,运筹学以及自然科学的某些问题中都占有重要的地位。
泊松分布(Poisson distribution),台译卜瓦松分布,是一种统计与概率学里常见到的离散机率分布(discrete probability distribution),由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。 泊松分布的概率密度函数为: P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!} 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。
(Poisson distribution),-{zh-cn:台译卜瓦松分布;zh-tw:也译为布瓦松分布,布阿松分布,波以松分布等}-,是一种统计与概率学里常见到的离散机率分布(discrete probability distribution),由法国数学家(Siméon-Denis Poisson)在1838年时发表。
泊松分布的概率密度函数为:
:P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}
泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。
泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。
观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示:
P(x)=(mx/x!)e-m
称为泊松分布。例如采用0.05J/m2紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式:
P(0)=e-3=0.05;
P(1)=(3/1!)e-3=0.15;
P(2)=(32/2!)e-3=0.22;
P(3)=0.22;
P(4)=0.17;……
P(0)是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/m2照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此P(1),P(2)……就意味着全部死亡的概率。
一种累计随机事件发生次数的最基本的独立增量过程。例如随着时间增长累计某电话交换台收到的呼唤次数,就构成一个泊松过程。用数学语言说,满足下列三条件的随机过程X={X(t),t≥0}叫做泊松过程。①P(X(0)=0)=1。②不相交区间上增量相互独立,即对一切0≤t1<t2<…<tn,X(t1),X(t2)-X(t1),…,X(tn)-X(tn-1)相互独立。③增量X(t)-X(s) (t>s)的概率分布为泊松分布,即,式中Λ(t)为非降非负函数。若X还满足④X(t)-X(s)的分布仅依赖于t-s,则称X为齐次泊松过程;这时Λ(t)=λt,式中常数λ>0称为过程的强度,因为EX(t)=Λ(t)=λt,λ等于单位时间内事件的平均发生次数。非齐次泊松过程可通过时间尺度的变换变为齐次泊松过程。对泊松过程,通常可取它的每个样本函数都是跃度为1的左(或右)连续阶梯函数。可以证明,样本函数具有这一性质的、随机连续的独立增量过程必是泊松过程,因而泊松过程是描写随机事件累计发生次数的基本数学模型之一。直观上,只要随机事件在不相交时间区间是独立发生的,而且在充分小的区间上最多只发生一次,它们的累计次数就是一个泊松过程。在应用中很多场合都近似地满足这些条件。例如某系统在时段【0,t)内产生故障的次数,一真空管在加热t秒后阴极发射的电子总数,都可假定为泊松过程。1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来Α.Я.辛钦于50年代在服务系统的研究中又进一步发展了它。
齐次泊松过程的特征 描述随机事件累计发生次数的过程通常称为计数过程(见点过程)。一个简单而且局部有限的计数过程{X(t),t≥0},往往也可以用它依次发生跳跃(即发生随机事件)的时刻{Tn,n≥1}来规定,即取T0=0,Tn=inf{t:X(t)≥n},n≥1,而当Tn<t≤Tn+1时,X(t)=n。若以,表示X(t)发生相邻两次跳跃的时间间距,则计数过程是齐次泊松过程的充分必要条件为{τn,n≥1}是相互独立同分布的,且,其中λ为某一非负常数。齐次泊松过程的另一个特征是:固定t,X(t)是参数为λt的泊松分布随机变量,而当X(t)=k已知的条件下,X的k个跳跃时刻与 k个在[0,t)上均匀分布且相互独立的随机变量的次序统计量(见统计量)有相同的分布。泊松过程的这一特征常作为构造多指标泊松过程的出发点。从马尔可夫过程来看,齐次泊松过程是时间空间都为齐次的纯生马尔可夫链。从鞅来看,齐次泊松过程X是使{X(t)-λt,t≥0}为鞅的跃度为1的计数过程。
泊松过程的推广 较泊松过程稍为广泛的计数过程是更新过程,更新过程的跳跃时间间距是相互独立同分布的,但不一定是指数分布。这类过程常被用来描写某些设备的累计故障次数。若对跳跃时间间距不作任何假定,就成为一般的计数过程或称一维点过程。假如某设备在【0,t)时段内故障的累计次数N(t)是泊松过程,而每次故障造成的耗损不尽相同,用随机变量Yi表示第i次耗损,则在【0,t)内总的耗损为。当{N(t),t≥0}为齐次泊松过程,{Yi,i≥1}又是相互独立同分布且与{N(t)}独立时,X={X(t),t≥0}称为复合泊松过程。由于{N(t),t≥0}可以用其跳跃时刻{Ti,i≥1}来规定,因而复合泊松过程可用{(TnYn),n≥1}来规定,即。若对{(Tn,Yn),n≥1}的统计特性不作任何假定,这样规定的X 便是一种一般地描述系统跳跃变化的随机过程,常称为标值点过程,也称多变点过程或跳跃过程。
泊松过程除作为计数过程的一种重要数学模型外,又是众多重要随机过程的特例。独立增量过程的莱维-伊藤分解表明,利用它还可构成一般的独立增量过程,因而它在随机过程中占有特殊地位,也有人把它与布朗运动一起称之为随机过程的基石。