发布网友 发布时间:2022-05-26 18:07
共1个回答
热心网友 时间:2023-10-15 11:58
高中介绍多项式:多项式f(x)图像与x轴相交次数就是方程f(x)=0的实根个数。一元n次多项式至多有n个实根,这可以用数学归纳法证明。
n=1时结论显然成立。根据归纳假设,g(x)至多有k个实根,从而f(x)至多有k+1个实根,即n=k+1时结论成立。
由数学归纳法原理,结论对任意正整数n成立。证明实际上也适用于复根,即一元n次多项式至多有n个复根,而代数基本定理保证一元n次多项式在计重数的意义上恰有n个复根,但不能在高中数学范围内证明。
简介
在数学中,多项式(polynomial)是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。
对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。