三角函数万能公式怎么推导?
发布网友
发布时间:2022-05-25 01:50
我来回答
共2个回答
热心网友
时间:2023-11-23 14:25
sin2A=2sinAcosA=2sinAcosA/(cos^2A+sin^2A)......*,(因为cos^2A+sin^2A=1),再把*分式上下同除cos^2A,可得
余弦的也是化为二倍角,除以cos^2A+sin^2A
热心网友
时间:2023-11-23 14:25
万能公式
(1)
(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tana+tanb+tanc=tanatanbtanc
证:
a+b=π-c
tan(a+b)=tan(π-c)
(tana+tanb)/(1-tanatanb)=(tanπ-tanc)/(1+tanπtanc)
整理可得
tana+tanb+tanc=tanatanbtanc
得证
同样可以得证,当x+y+z=nπ(n∈z)时,该关系式也成立
由tana+tanb+tanc=tanatanbtanc可得出以下结论
(5)cotacotb+cotacotc+cotbcotc=1
(6)cot(a/2)+cot(b/2)+cot(c/2)=cot(a/2)cot(b/2)cot(c/2)
(7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc
(8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc