发布网友 发布时间:2022-05-12 04:37
共4个回答
热心网友 时间:2023-11-14 18:29
哥德*猜想是数的一种表现次序,人们持久地爱好它,是因为如果没有这种次序,人们就会丧失对更深刻问题的信念——因为无序是对美的致命伤,假如哥德*猜想是错误的,它将*我们的观察能力。使我们难以跨越一些问题并无法欣赏。一个问题把它无序的一面强加给我们的内心生活,就会使我们的感受趋向丑陋,引起自卑和伤感。哥德*猜想实际是说,任何一个大于3的自然数n.都有一个x, 使得n+x与n-x都是素数,因为,(n+x)+(n-x)=2n.这是一种素数对自然数形式的对称,代表一种秩序,它之所以意味深长,是因为素数这种似乎杂乱无章的东西被人们用自然数n对称地串联起来,正如牧童一声口稍就把满山遍野乱跑的羊群唤在一起,它使人心晃神移,又像生物基因DNA,呈双螺旋结构绕自然数n转动,人们从玄虚的素数看到了纯朴而又充满青春的一面。对称不仅是视觉上的美学概念,它意味着对象的统一。 素数具有一种浪漫的气质,它以神秘的魅力产生一种不定型的朦胧,相比之下,圆周率,自然对数。虚数。费肯鲍姆数就显得单纯多了,欧拉曾用一个公式把它们统一起来。而素数给人们更多的悲剧色彩,有一种神圣不可侵犯的冷漠。当哥德*猜想变成定理,我们可以看到上帝的大智大慧,乘法是加法的重叠,而哥德*猜想却用加法将乘性概括。在这隐晦的命题之中有着深奥的知识。它改变人们对数的看法:乘法的轮郭凭直观就可以一目了然,哥德*猜想体现一种探索机能,贵贱之别是显然的,加法和乘法都是数量的堆积,但乘法是对加法的概括,加法对乘性的控制却体现了两种不同的要求,前者通过感受可以领悟,后者则要求灵感——人性和哲学。静观前者而神往于它的反面(后者),这理想的境界变成了百年的信仰和反思,反思的特殊价值在于满足了深层的好奇,是一切重大发现的精神通路,例如录音是对发音的反思结果,磁生电是对电生磁的反思结果。。。。顺思与反思是一种对称,表明一种活力与生机。顺思是自然的,反思是主动的,顺思产生经验,反思才能产生科学。顺思的内容常常是浅表的公开的,已知的。反思的内容常常是隐蔽的,未知的。反思不是简单的衷情回顾不是对经验的眷念,而是寻找事物本质的终极标准——-对历史*或事物*的揭示。 哥德*猜想为什么会吸引人?世界上绝对没有客观方面能打动人的事物和因素。一件事之所以会吸引人,那是因为它具有某种特质能震动观察者的感受力,感受力的大小即观察者的素质。感人的东西往往是开放的。给人以无限遐思和暗示。哥德*猜想以一种表面开朗简洁的形式掩盖它阴险的本质。他周围笼罩着一种强烈的朦胧气氛。他以喜剧的方式挑逗人们开场,却无一例外以悲剧的形式谢幕。他温文尔雅地拒绝一切向她求爱的人们,让追求者争风吃醋,大打出手,自己却在一旁看着一场有一场拙劣的表演。哥氏猜想以一种抽象的美让人们想入非非,他营造一种仙境,挑起人们的*和野心,让那些以为有点才能的人劳苦、烦恼、愤怒中死亡。他恣意横行于人类精神的海洋,让智慧的小船难以驾驭,让科研的‘泰坦尼克’一次又一次沉没。。。 人类的精神威信建立在科学对迷信和无知的胜利之上,人类的群体的精神健康依赖于一种自信,只有自信才能导入完美的信念使理想进入未来中,完美的信念使人生的辛劳和痛苦得以减轻,这样任何惊心动魄的灾难,荡气回肠的悲怆都难以摧毁人的信念,只有感到*时,信念才会土崩瓦解。肉体在空虚的灵魂诱导之下融入畜类,人类在失败中引发自卑。哥德*猜想的哲学意义正在如此。 时代在等待名垂千古的英雄。热心网友 时间:2023-11-14 18:29
世界近代三大数学难题之一。哥德*是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为*彼得堡科学院院士。1742年,哥德*在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。 公元1742年6月7日哥德*(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。 这就是着名的哥德*猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一一进行验算,哥德*猜想(a)都成立。但验格的数学证明尚待数学家的努力。 从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德*猜想由此成为数学皇冠上一颗可望不可及的"明珠"。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了"哥德*"。 目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen’s Theorem) ? "任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。" 通常都简称这个结果为大偶数可表示为 "1 + 2 "的形式。 在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称"s + t "问题)之进展情况如下: 1920年,挪威的布朗(Brun)证明了 "9 + 9 "。 1924年,德国的拉特马赫(Rademacher)证明了"7 + 7 "。 1932年,英国的埃斯特曼(Estermann)证明了 "6 + 6 "。 1937年,意大利的蕾西(Ricei)先后证明了"5 + 7 ", "4 + 9 ", "3 + 15 "和"2 + 366 "。 1938年,苏联的布赫 夕太勃(Byxwrao)证明了"5 + 5 "。 1940年,苏联的布赫 夕太勃(Byxwrao)证明了 "4 + 4 "。 1948年,匈牙利的瑞尼(Renyi)证明了"1 + c ",其中c是一很大的自然 数。 1956年,中国的王元证明了 "3 + 4 "。 1957年,中国的王元先后证明了 "3 + 3 "和 "2 + 3 "。 1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 "1 + 5 ", 中国的王元证明了"1 + 4 "。 1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了"1 + 3 "。 1966年,中国的陈景润证明了 "1 + 2 "。 最终会由谁攻克 "1 + 1 "这个难题呢?现在还没法预测。热心网友 时间:2023-11-14 18:29
每个不小于6的偶数都是两素数之和[简称(1+1)]的猜想,就被称为“哥德*猜想”,成为数学皇冠上一颗可望不可即的“明珠”。 只是到现在还未证明出来! 陈景润证明了1+2(“大偶数都能表示为一个素数及一个不超过二个素数的积之和”,被国际公认为“陈景润定理”) 可是最后还是死了!热心网友 时间:2023-11-14 18:30
哥德*猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德*猜想,后者称"弱"或"三重哥德*猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和。 望采纳