发布网友 发布时间:2022-05-10 09:15
共6个回答
懂视网 时间:2022-05-10 13:36
这里再重复一下标题为什么是"使用"而不是"实现":首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高。
其次,对于数学不好的人来说,为了实现算法而去研究一堆公式是很痛苦的事情。
再次,除非他人提供的算法满足不了自己的需求,否则没必要"重复造轮子"。
下面言归正传,不了解贝叶斯算法的可以去查一下相关资料,这里只是简单介绍一下:
1.贝叶斯公式:
P(A|B)=P(AB)/P(B)
2.贝叶斯推断:
P(A|B)=P(A)×P(B|A)/P(B)
用文字表述:
后验概率=先验概率×相似度/标准化常量
而贝叶斯算法要解决的问题就是如何求出相似度,即:P(B|A)的值
3. 在scikit-learn包中提供了三种常用的朴素贝叶斯算法,下面依次说明:
1)高斯朴素贝叶斯:假设属性/特征是服从正态分布的(如下图),主要应用于数值型特征。
使用scikit-learn包中自带的数据,代码及说明如下:
>>>from sklearn import datasets ##导入包中的数据 >>> iris=datasets.load_iris() ##加载数据 >>> iris.feature_names ##显示特征名字 ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] >>> iris.data ##显示数据 array([[ 5.1, 3.5, 1.4, 0.2],[ 4.9, 3. , 1.4, 0.2],[ 4.7, 3.2, 1.3, 0.2]............ >>> iris.data.size ##数据大小 ---600个 >>> iris.target_names ##显示分类的名字 array(['setosa', 'versicolor', 'virginica'], dtype='<U10') >>> from sklearn.naive_bayes import GaussianNB ##导入高斯朴素贝叶斯算法 >>> clf = GaussianNB() ##给算法赋一个变量,主要是为了方便使用 >>> clf.fit(iris.data, iris.target) ##开始分类。对于量特别大的样本,可以使用函数partial_fit分类,避免一次加载过多数据到内存 >>> clf.predict(iris.data[0].reshape(1,-1)) ##验证分类。标红部分特别说明:因为predict的参数是数组,data[0]是列表,所以需要转换一下 array([0]) >>> data=np.array([6,4,6,2]) ##验证分类 >>> clf.predict(data.reshape(1,-1)) array([2])
这里涉及到一个问题:如何判断数据符合正态分布? R语言里面有相关函数判断,或者直接绘图也可以看出来,但是都是P(x,y)这种可以在坐标系里面直接
画出来的情况,而例子中的数据如何确定,目前还没有搞明白,这部分后续会补上。
2)多项式分布朴素贝叶斯:常用于文本分类,特征是单词,值是单词出现的次数。
##示例来在官方文档,详细说明见第一个例子 >>> import numpy as np >>> X = np.random.randint(5, size=(6, 100)) ##返回随机整数值:范围[0,5) 大小6*100 6行100列 >>> y = np.array([1, 2, 3, 4, 5, 6]) >>> from sklearn.naive_bayes import MultinomialNB >>> clf = MultinomialNB() >>> clf.fit(X, y) MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2])) [3]
3)伯努力朴素贝叶斯:每个特征都是是布尔型,得出的结果是0或1,即出现没出现
##示例来在官方文档,详细说明见第一个例子 >>> import numpy as np >>> X = np.random.randint(2, size=(6, 100)) >>> Y = np.array([1, 2, 3, 4, 4, 5]) >>> from sklearn.naive_bayes import BernoulliNB >>> clf = BernoulliNB() >>> clf.fit(X, Y) BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2])) [3]
热心网友 时间:2022-05-10 10:44
朴素贝叶斯分类器是一种应用基于独立假设的贝叶斯定理的简单概率分类器,之所以成为朴素,应该是Naive的直译,意思为简单,朴素,天真。
1、贝叶斯方法
贝叶斯方法是以贝叶斯原理为基础,使用概率统计的知识对样本数据集进行分类。由于其有着坚实的数学基础,贝叶斯分类算法的误判率是很低的。
贝叶斯方法的特点是结合先验概率和后验概率,即避免了只使用先验概率的主观偏见,也避免了单独使用样本信息的过拟合现象。贝叶斯分类算法在数据集较大的情况下表现出较高的准确率,同时算法本身也比较简单。
2、朴素贝叶斯算法
朴素贝叶斯算法(Naive Bayesian algorithm) 是应用最为广泛的分类算法之一。
朴素贝叶斯方法是在贝叶斯算法的基础上进行了相应的简化,即假定给定目标值时属性之间相互条件独立。也就是说没有哪个属性变量对于决策结果来说占有着较大的比重,也没有哪个属性变量对于决策结果占有着较小的比重。
虽然这个简化方式在一定程度上降低了贝叶斯分类算法的分类效果,但是在实际的应用场景中,极大地简化了贝叶斯方法的复杂性。
扩展资料
研究意义
人们根据不确定性信息作出推理和决策需要对各种结论的概率作出估计,这类推理称为概率推理。概率推理既是概率学和逻辑学的研究对象,也是心理学的研究对象,但研究的角度是不同的。概率学和逻辑学研究的是客观概率推算的公式或规则。
而心理学研究人们主观概率估计的认知加工过程规律。贝叶斯推理的问题是条件概率推理问题,这一领域的探讨对揭示人们对概率信息的认知加工过程与规律、指导人们进行有效的学习和判断决策都具有十分重要的理论意义和实践意义。
热心网友 时间:2022-05-10 12:02
朴素贝叶斯分类器是一种应用基于独立假设的贝叶斯定理的简单概率分类器。
之所以成为朴素,应该是Naive的直译,意思为简单,朴素,天真。
朴素贝叶斯分类是最常用的两大分类算法(决策树分类和朴素贝叶斯分类)。分类是将一个未知样本分到几个预先已知类的过程。
朴素贝叶斯分类是基于贝叶斯概率的思想,假设属性之间相互独立,例如A和B,则P(B|A)代表A发生的情况下,B发生的概率。
扩展资料
朴素贝叶斯算法
朴素贝叶斯算法(Naive Bayesian algorithm) 是应用最为广泛的分类算法之一。
朴素贝叶斯方法是在贝叶斯算法的基础上进行了相应的简化,即假定给定目标值时属性之间相互条件独立。也就是说没有哪个属性变量对于决策结果来说占有着较大的比重。
也没有哪个属性变量对于决策结果占有着较小的比重。虽然这个简化方式在一定程度上降低了贝叶斯分类算法的分类效果,但是在实际的应用场景中,极大地简化了贝叶斯方法的复杂性。
热心网友 时间:2022-05-10 13:37
朴素贝叶斯分类器是一种应用基于独立假设的贝叶斯定理的简单概率分类器。热心网友 时间:2022-05-10 15:28
因为naïve热心网友 时间:2022-05-10 17:36
因为贝叶斯这个人生活很朴素。