发布网友 发布时间:2024-10-22 05:09
共1个回答
热心网友 时间:2024-10-26 00:13
如上图,
已知:AC,BD为四边形ABCD的两条对角线,E,F,G,H分别为AB,AD,CD,BC的中点,且OE=OF=OG=OH
求证:四边形ABCD为菱形
证明:因为FG,EH分别是∆ABC和∆DBC的中位线,由中位线定理,EH∥AC,2EH=AC,GF∥AC,2GF=AC,所以GF∥EH,GF=EH,所以四边形EFGH是平行四边形;
因为OH=OE,所以点O在HE的中垂线上,同理,O在GF的中垂线上,HE,GF的中点分别为K,M,则O,K,M三点共线,HG,EF的中点分别为N,P,同理可得O,N,P三点共线,且NP是EF的中垂线;
又OK为∆HEF的中位线,所以OK∥EF,于是EF⊥EH;由于NP⊥EF,KM⊥HE,故KM⊥NP;
那么在∆OCD中,∠DOC=90度,故OH=HC=HD,则CD=2OH,同理可得BC=2OG,AB=2OF,AD=2OE,又OE=OF=OG=OH,故,AB=BC=CD=AD,则四边形ABCD为菱形。
热心网友 时间:2024-10-26 00:17
如上图,
已知:AC,BD为四边形ABCD的两条对角线,E,F,G,H分别为AB,AD,CD,BC的中点,且OE=OF=OG=OH
求证:四边形ABCD为菱形
证明:因为FG,EH分别是∆ABC和∆DBC的中位线,由中位线定理,EH∥AC,2EH=AC,GF∥AC,2GF=AC,所以GF∥EH,GF=EH,所以四边形EFGH是平行四边形;
因为OH=OE,所以点O在HE的中垂线上,同理,O在GF的中垂线上,HE,GF的中点分别为K,M,则O,K,M三点共线,HG,EF的中点分别为N,P,同理可得O,N,P三点共线,且NP是EF的中垂线;
又OK为∆HEF的中位线,所以OK∥EF,于是EF⊥EH;由于NP⊥EF,KM⊥HE,故KM⊥NP;
那么在∆OCD中,∠DOC=90度,故OH=HC=HD,则CD=2OH,同理可得BC=2OG,AB=2OF,AD=2OE,又OE=OF=OG=OH,故,AB=BC=CD=AD,则四边形ABCD为菱形。