发布网友 发布时间:2024-10-22 09:57
共1个回答
热心网友 时间:2024-11-20 17:06
如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。约数和倍数都表示一个数与另一个数的关系,不能单独存在。如只能说16是某数的倍数,2是某数的约数,而不能孤立地说16是倍数,2是约数。 倍与倍数是不同的两个概念,倍是指两个数相除的商,它可以是整数、小数或者分数。倍数只是在数的整除的范围内,相对于约数而言的一个数字的概念,表示的是能被某一个自然数整除的数,它必须是一个自然数。 几个自然数,公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。例如:12、16的公约数有1、2、4,其中最大的一个是4,4是12与16的最大公约数,一般记为(12、16)=4。12、15、18的最大公约数是3,记为(12、15、18)=3。 几个自然数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小的一个,叫做这几个数的最小公倍数。例如:4的倍数有4、8、12、16,……,6的倍数有6、12、18、24,……,4和6的公倍数有12、24,……,其中最小的是12,一般记为[4、6]=12。12、15、18的最小公倍数是180。记为[12、15、18]=180。 短除法求最大约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然 后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。例如,求24、48、60的最大公约数。 (24、48、60)=2×3×2=12 短除法求最小公倍数,先用这几个数的公约数去除每一个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。 (12、15、18)=3×2×2×5×3=180 无论是短除法,还是分解质因数法,在质因数较大时,都会觉得困难。这时就需要用新的方法。