已知关于x的函数y=mx2+(m-1)x-2m+1.(1)当m为何值时,函数图象...
发布网友
发布时间:2024-10-22 09:11
我来回答
共1个回答
热心网友
时间:2024-11-13 19:28
解:(1)①若m=0,函数为一次函数,
图象为直线,必与x轴只有一个交点.
原方程即y=-x+1,当y=0时,x=1,
所以与x轴交点为(1,0)
②若m≠0,函数为二次函数,
抛物线与x轴只有一个交点时,b2-4ac=0,且
b2-4ac=(m-1)2-4m(-2m+1)=9m2-6m+1=(3m-1)2
即(3m-1)2=0
解得m1,2=13
原方程即y=13x2-23x+13,
当y=0时,x1,2=1,所以与x轴交点为(1,0)
(2)函数图象与x轴相交于AB两点,
即当y=0时,mx2+(m-1)x-2m+1=0,
解得x1=1,x2=1-2mm
又AB=1,即|1-2mm-1|=1
解得m1=12,m2=14,经检验,结论成立.