计算二重积分∫(0,1)dx∫(0,根号x)e^(-y²/2)dy
发布网友
发布时间:2024-10-22 07:37
我来回答
共1个回答
热心网友
时间:2024-11-06 22:19
原式=∫dy∫e^(-y²/2)dx (作积分顺序变换)
=∫(1-y²)e^(-y²/2)dy
=∫e^(-y²/2)dy-∫y²e^(-y²/2)dy
=∫e^(-y²/2)dy-{[-ye^(-y²/2)]│+∫e^(-y²/2)dy} (应用分部积分法)
=∫e^(-y²/2)dy-[-e^(-1/2)+∫e^(-y²/2)dy]
=∫e^(-y²/2)dy+e^(-1/2)-∫e^(-y²/2)dy
=e^(-1/2)
=1/√e.