设Γ为y=sinx上自点(0,0)到点(π,0)的一段弧,求∫Γ(x/1+x^2+ycosx...
发布网友
发布时间:2024-10-21 23:10
我来回答
共1个回答
热心网友
时间:2024-11-13 01:34
记
O(0,
0),
A(π,0),
补充线段
AO成封闭图形,则
I
=
∫<Γ>
=
∮<Γ+AO>
+
∫<OA>
前者用格林公式,
顺时针加负号;后者
y
=
0,
dy
=
0。
I
=
-∫∫<D>
[(1+cosxy-xysinxy)
-
(cosxy-xysinxy)]dxdy
+
∫<0,
π>xdx/(1+x^2)
=
-∫∫<D>dxdy
+
(1/2)∫<0,
π>d(1+x^2)/(1+x^2)
=
-
∫<0,
π>sinxdx
+
(1/2)[ln(1+x^2)]<0,
π>
=
[cosx]<0,
π>
+
(1/2)ln(1+π^2)
=
(1/2)ln(1+π^2)
-
2
热心网友
时间:2024-11-13 01:30
记
O(0,
0),
A(π,0),
补充线段
AO成封闭图形,则
I
=
∫<Γ>
=
∮<Γ+AO>
+
∫<OA>
前者用格林公式,
顺时针加负号;后者
y
=
0,
dy
=
0。
I
=
-∫∫<D>
[(1+cosxy-xysinxy)
-
(cosxy-xysinxy)]dxdy
+
∫<0,
π>xdx/(1+x^2)
=
-∫∫<D>dxdy
+
(1/2)∫<0,
π>d(1+x^2)/(1+x^2)
=
-
∫<0,
π>sinxdx
+
(1/2)[ln(1+x^2)]<0,
π>
=
[cosx]<0,
π>
+
(1/2)ln(1+π^2)
=
(1/2)ln(1+π^2)
-
2