发布网友 发布时间:2024-10-16 08:30
共1个回答
热心网友 时间:2024-10-18 11:34
解:由已知sinA(sinB+cosB)– sinC = 0,所以sinA(sinB+cosB)= sinC = sin(A + B) = sinAcosB + cosAsinB,移项可得sinAsinB – cosAsinB = 0,所以sinA – cosA= 0,所以sinA = cosA,因此cosA ≠ 0,所以tanA = 1,可得A = kπ + arctan1 = kπ + π/4,k∈Z,而A是三角形ABC的内角,所以只能是k = 0,对应的A = π/4,所以C = π – A –B = 3π/4 – B,代入sinB + cosC = 0可得sinB + cos(3π/4 – B) = 0,展开得sinB + cos(3π/4)cosB + sin(3π/4)sinB = 0,即(1 + √2/2)sinB – (√2/2)cosB = 0,所以(1 + √2/2)sinB = (√2/2)cosB,进而tanB = (√2/2)/(1 + √2/2) = 1/(√2 + 1) = √2– 1,所以B = kπ + arctan(√2 – 1) = kπ + π/8,k∈Z,而B是三角形ABC的内角,所以只能是k = 0,对应的B = π/8 ;