...边AB、AC为边向外作等边△ABD和等边△ACE,连接BE、CD交于O点。求 ...
发布网友
发布时间:2024-10-18 07:49
我来回答
共1个回答
热心网友
时间:2024-11-03 19:04
证法1:
因为△ABD、△ACE为等边三角形
所以
AD=AB,AC=AE,角DAB=角CAE=60度,角DAB+角BAC=角CAE+角BAC
所以
角DAC=角BAE,所以
三角形DAC全等于三角形BAE,
所以
角ABO=角ADO,角AEO=角ACO
所以
B,O,A,D四点共圆,C,O,A,E四点共圆
所以
角AOD=角ABD=60°,角AOE=角ACE=60°
所以
角AOD=角AOE=60°,所以
OA平分∠DOE
证法2:
因为△ABD、△ACE为等边三角形
所以
AD=AB,AC=AE,角DAB=角CAE=60度,角DAB+角BAC=角CAE+角BAC
所以
角DAC=角BAE,所以
三角形DAC全等于三角形BAE,
所以
DC=BE
且三角形DAC和三角形BAE的面积相等;
过A分别作DC、BE边上的高AF,AG,则高AF=AG相等,Rt△AOF全等于Rt△AOG,角AOD=角AOE,
于是AO平分角DOE。(我会告诉你抄袭的么。。)