发布网友 发布时间:2022-05-07 20:41
共1个回答
热心网友 时间:2022-07-01 09:39
1)可以证明,如果正整数(a,m) = 1和正整数 d 满足a^d≡1(mod m),则 d 整除 φ(m)。因此Ordm(a)整除φ(m)。在例子中,当a= 3时,我们仅需要验证 3 的 1 、2、3 和 6 次方模 7 的余数即可。
2)记δ = Ordm(a),则a^1,……a^(δ-1)模 m 两两不同余。因此当a是模m的原根时,a^0,a^1,……a^(δ-1)构成模 m 的简化剩余系。
3)模m有原根的充要条件是m= 1,2,4,p,2p,p^n,其中p是奇质数,n是任意正整数。
4)对正整数(a,m) = 1,如果 a 是模 m 的原根,那么 a 是整数模n乘法群(即加法群 Z/mZ的可逆元,也就是所有与 m 互素的正整数构成的等价类构成的乘法群)Zn的一个生成元。由于Zn有 φ(m)个元素,而它的生成元的个数就是它的可逆元个数,即 φ(φ(m))个,因此当模m有原根时,它有φ(φ(m))个原根。