初三二次函数题
发布网友
发布时间:2022-04-21 09:56
我来回答
共1个回答
热心网友
时间:2023-09-24 19:50
1.(北京西城区)抛物线y=x²-2x+1的对称轴是( )
(A)直线x=1 (B)直线x=-1 (C)直线x=2 (D)直线x=-2
考点:二次函数y=ax²+bx+c的对称轴.
评析:因为抛物线y=ax²+bx+c的对称轴方程是:x=-b/2a,将已知抛物线中的a=1,b=-2代入,求得x=1,故选项A正确.
另一种方法:可将抛物线配方为y=a(x-h)²+k的形式,对称轴为x=h,已知抛物线可配方为y=(x-1)²,所以对称轴x=1,应选A.
2.( 北京东城区)有一个二次函数的图象,三位学生分别说出了它的一些特点:
甲:对称轴是直线x=4;
乙:与x轴两个交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.
请你写出满足上述全部特点的一个二次函数解析式: .
考点:二次函数y=ax²+bx+c的求法
评析:设所求解析式为y=a(x-x1)(x-x2),且设x1<x2,则其图象与x轴两交点分别是A(x1,0),B(x2,0),与y轴交点坐标是(0,ax1x2). 『因为顶点式a(x+x1)(x+x2),又因为与y轴交点的横坐标为0,所以a(0+x1)(0+x2),也就是ax1x2
∵抛物线对称轴是直线x=4,
∴x2-4=4 - x1即:x1+ x2=8 ① ∵S△ABC=3,∴(x2- x1)·|a x1 x2|= 3,
即:x2- x1= ②
①②两式相加减,可得:x2=4+,x1=4-
∵x1,x2是整数,ax1x2也是整数,∴ax1x2是3的约数,共可取值为:±1,±3。
当ax1x2=±1时,x2=7,x1=1,a=±
当ax1x2=±3时,x2=5,x1=3,a=±
因此,所求解析式为:y=±(x-7)(x-1)或y=±(x-5)(x-3)
即:y=x2-x+1 或y=-x2+x-1 或y=x2-x+3 或y=-x2+x-3
说明:本题中,只要填出一个解析式即可,也可用猜测验证法。例如:猜测与x轴交点为A(5,0),B(3,0)。再由题设条件求出a,看C是否整数。若是,则猜测得以验证,填上即可。
5.( 河北省)如图13-28所示,二次函数y=x²-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( )
A、6 B、4 C、3 D、1
考点:二次函数y=ax2+bx+c的图象及性质的运用。
评析:由函数图象可知C点坐标为(0,3),再由x²-4x+3=0可得x1=1,x2=3所以A、B两点之间的距离为2。那么△ABC的面积为3,故应选C。
图13-28
6.( 安徽省)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0<x<30)。y值越大,表示接受能力越强。
(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?
(2)第10分时,学生的接受能力是什么?
(3)第几分时,学生的接受能力最强?
考点:二次函数y=ax²+bx+c的性质。
评析:将抛物线y=-0.1x2+2.6x+43变为顶点式为:y=-0.1(x-13)2+59.9,根据抛物线的性质可知开口向下,当x<13时,y随x的增大而增大,当x>13时,y随x的增大而减小。而该函数自变量的范围为:0<x3<0,所以两个范围应为0<x<13;13<x<30。将x=10代入,求函数值即可。由顶点解析式可知在第13分钟时接受能力为最强。解题过程如下:
解:(1)y=-0.1x2+2.6x+43=-0.1(x-13)2+59.9
所以,当0<x<13时,学生的接受能力逐步增强。
当13<x<30时,学生的接受能力逐步下降。
(2)当x=10时,y=-0.1(10-13)2+59.9=59。
第10分时,学生的接受能力为59。
(3)x=13时,y取得最大值,
所以,在第13分时,学生的接受能力最强。
9.( 河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围);
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克),所以月销售利润为
:(55–40)×450=6750(元).
(2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为:
y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x²+1400x–40000(元),
∴y与x的函数解析式为:y =–10x²+1400x–40000.
(3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000,
即:x2–140x+4800=0,
解得:x1=60,x2=80.
当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为:
40×400=16000(元);
当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为:
40×200=8000(元);
由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元.
19.2006义乌市经济继续保持平稳较快的增长态势,全市实现生产总值 元,已知全市生产总值=全市户籍人口×全市人均生产产值,设义乌市2006年户籍人口为x(人),人均生产产值为y(元).
(1)求y关于x的函数关系式;
(2)2006年义乌市户籍人口为706 684人,求2006年义乌市人均生产产值(单位:元,结果精确到个位):若按2006年全年美元对人民币的平均汇率计(1美元=7.96元人民币),义乌市2006年人均生产产值是否已跨越6000美元大关?
20.下图1为义乌市2005年,2006年城镇居民人均可支配收入构成条形统计图。图2为义乌市2006年城镇居民人均可支配收入构成扇形统计图,城镇居民个人均可支配收入由工薪收入、经营净收入、财产性收入、转移性收入四部分组成。请根据图中提供的信息回答下列问题:
(1)2005年义乌市城镇居民人均工薪收入为________元,2006年义乌市城镇居民人均可支配收入为_______元;
(2)在上图2的扇形统计图中,扇形区域A表示2006年的哪一部分收入:__________.
(3)求义乌市2005年到2006年城镇居民人远亲中支配收入的增长率(精确到0.1℅)
19.解:(1) (x为正整数)
(2)2006年全市人均生产产值= (元)(2分)
我市2006年人均生产产值已成功跨越6000美元大关(1分)
初三二次函数与方程
题目:二次函数y=(1/-5)x^2+(8/5)x 解:将二次函数配方得y=(-1/5)(x-4)^2+(16/5),可见系数-1/5小于零,表明开口向下,顶点坐标为(4,16/5),对称轴为x=4。(2)令y=0,解得x1=0,x2=8,表明最大水平距离为8米。(3)若要进球,则x=8+2=10。将此值代入原二次函数...
初三数学二次函数经典题型有哪些?
初三数学二次函数经典题型有以下这些:1、现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=-x2+4x上的概率为()A.118B.112C.19...
初三二次函数问题。
(1)y=ax2-4ax+c=a(x-2)2-4a+c,∴抛物线的对称轴为直线x=2∵点D(4,-3)在抛物线上,∴由对称性知C(0,-3).∴四边形ABCD为梯形.由四边形ABDC的面积为18、CD=4,OC=3得AB=8,∴A(-2,0).由A(-2,0)、C(0,-3)得y=14x2-x-3.(2)易得S△OB...
初三二次函数问题,急~~
1、将抛物线y=x2+x-2关于x轴作轴对称变换,即把y变成-y,变成 -y=x2+x-2,也就是y=-x^2 - x +2;2、将所得的抛物线(y=-x^2 - x +2)关于y轴作轴对称变换,即把x变成-x,变成 y=-(-x)^2 - (-x) +2= -x^2+x+2,为C答案。
初三数学题二次函数求第二题过程答案(忽略我的错误答案)
所以抛物线解析式为:y=x^2+6x+6 (2) 图就不画了,我把几个关键的地方说下吧 抛物线:y=x^2+6x+6 写成顶点式就是:y=(x+3)^2-3 那么二次函数对称轴为:x=-3,顶点为(-3,-3),与y轴交点为(0,6)与x轴的交点为:(-3+√3) 和 (-3-√3) ,有了这些图像就没问题了吧。
完整题目如下,初三数学二次函数
解:1年后的本息和m=n(1+x)(n为本金,x为利率)故此题中两年的本息和y=a(1+x)²,即y=ax²+2ax+a(a,x>0)
初三二次函数解答题。只要解题思路,不要解题答案,谢谢!
25、(1)代入A坐标,求出a的表达式。(2)D点坐标,x=0时代入求出。D到对称轴的距离是多少,下底就是AB长,高是定值,D坐标说明一切,梯的一半就求到了。列出等式,求出t。(3)E在一条直线上,哪条,它的坐标满足那个条件。求出直线。求出其与抛物线交点坐标,这里位于左右侧是有影响的。
初三数学二次函数实际应用题
第一题:解答:解:(1)根据题意,得y=(2400-2000-x)(8+4×),即y=-x2+24x+3200;(2)由题意,得-x2+24x+3200=4800.整理,得x2-300x+20000=0.解这个 方程 ,得x1=100,x2=200.要使百姓得到实惠,取x=200.所以,每台冰箱应降价200元;(3)对于y=-x2+24x+3200,当x...
初三数学二次函数销售问题!不会做!求解!
(126 - 进价) ÷ 进价 = 1/2 解得 进价 = 84(利润是 42)当 x = 1 时,单价 = 126,此时利润 w:w = 42 当 x > 1 时,单价 = 126 - 2x,此时利润 w:w = (42 - 2x)x 这就是函数关系式。销售 10 或 11 个时,利润最大是 220。在此之前不断增加,此后不断减少。
初三二次函数...很简单的
(120-4X)㎝,另一个正方形的边长是:(120-4X)÷4=(30-X)㎝,它们的面积和是S 它们的面积和是:S=X²+(30-X)²=2X²-60X+900,30<X<120 S=2X²-60X+900=2(X-15)²+450 当X=15时,面积和有最大值,最大面积是450㎝²...