x→0时f(x)=1/sinx-1/x为x^k的同阶无穷小,求k
发布网友
发布时间:2024-09-30 22:11
我来回答
共4个回答
热心网友
时间:2024-10-31 02:20
因此k=1
追问请问如果多展开或者少展开一阶是不是就做不出来了?
我刚学
热心网友
时间:2024-10-31 02:21
lim<x→0>f(x)/x^k = lim<x→0>(1/sinx-1/x)/x^k
= lim<x→0>(x-sinx)/(xsinx)/x^k = lim<x→0>(x-sinx)/x^(k+2) (0/0)
= lim<x→0>(1-cosx)/[(k+2)x^(k+1)] = lim<x→0>(x^2/2)/[(k+2)x^(k+1)]
= lim<x→0>1/[2(k+2)x^(k-1)] = C, k-1 = 0, k = 1
热心网友
时间:2024-10-31 02:21
😁
追问不好意思
原题是(1/sinx)-1/x
能再帮帮我吗
热心网友
时间:2024-10-31 02:22
limf(x)(1/sinx-1/x)/x^k
=limf(x)[(x-sinx)/xsinx]/x^k
=limf(x)(x-sinx)/x^(k+2)
=limf(x)(1-cosx)/[(k+2)*x^(k+1)]
=limf(x)sinx/[(k+1)(k+2)*x^k]
=limf(x)x/[(k+1)(k+2)*x^k]
所以k=1