怎样证明(cosx)'=-sinx.
发布网友
发布时间:2024-09-27 02:02
我来回答
共1个回答
热心网友
时间:21小时前
由导数的定义:
(cos(x))' = lim{t → 0} (cos(x+t)-cos(x))/t
= lim{t → 0} -2sin(x+t/2)sin(t/2)/t (和差化积)
= -lim{t → 0} sin(x+t/2) · lim{t → 0} sin(t/2)/(t/2) (极限四则运算)
= -sin(x)·1 (sin(x)连续性, 重要极限)
= -sin(x).
热心网友
时间:21小时前
由导数的定义:
(cos(x))' = lim{t → 0} (cos(x+t)-cos(x))/t
= lim{t → 0} -2sin(x+t/2)sin(t/2)/t (和差化积)
= -lim{t → 0} sin(x+t/2) · lim{t → 0} sin(t/2)/(t/2) (极限四则运算)
= -sin(x)·1 (sin(x)连续性, 重要极限)
= -sin(x).