问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

如何把爬虫写入Django(怎么用爬虫爬小说)

发布网友 发布时间:2024-09-25 14:35

我来回答

1个回答

热心网友 时间:2024-11-15 10:25

本篇文章给大家谈谈如何把爬虫写入Django,以及怎么用爬虫爬小说对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

1、怎么在django后台调用scrapy爬虫2、django和爬虫程序如何整合?3、如何在服务器上部署Django项目并使其在后台一直运行4、如何用Python做爬虫5、Python中Django如何使用?6、Python爬虫如何写?怎么在django后台调用scrapy爬虫

你可以试试Scrapy-djangoitem(Scrapy1.0.0之前为Djangoitem),它可以在item中调用Django的model。

不知道是否符合你的需求?

django和爬虫程序如何整合?

它采用类似策略模式的实现方法,该类有一个字符串的成员变量,用于存放该函数对象对应的函数名字,在ProcessFunction类中主要实现了process方法

此方法的功能是通过协议层从传输层中读取并解析出调用的参数,然后再由具体的函数对象提供的getResult函数计算出结果!

如何在服务器上部署Django项目并使其在后台一直运行

前几天老师让我把一个Django项目(爬虫网页)放到校园内网上,但是我想先用自己的服务器来尝试一下。之前刚好有在Digital Ocean上买过服务器用来运行ss脚本,平时服务器一直放着没啥用,所以就拿它来试验一下。

废话不多说,第一步通过WinSCP软件把Django文件传到服务器上。

在服务器中安装Django需要的环境和我所需要的Python第三方库。

以上所有步骤完成后,还需要进行一步操作,这是我经历的一个 坑 。 打开Django文件目录中的 settings.py,把 ALLOWED_HOSTS=[] 改为 ALLOWED_HOSTS=["*"] 。

在服务器中打开到 manage.py 所在的目录,输入命令:

python3 manage.py runserver 0.0.0.0:8000

然后按下回车,在浏览器中输入: 该服务器IP地址:8000 ,大功告成!

Attention:

1. python3 不是特定的,是根据你的Django项目所需要的环境指定的。

2. 8000 是端口号,可以修改。

如果想要Django项目一直运行,关闭终端后还在运行,即需要运行如下命令, nohup command, command 即位上文所说的 python3 manage.py runserver 0.0.0.0:8000 。

如何用Python做爬虫

1)首先你要明白爬虫怎样工作。

想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。

在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。

突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。

好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。

那么在python里怎么实现呢?

很简单

import Queue

initial_page = "初始化页"

url_queue = Queue.Queue()

seen = set()

seen.insert(initial_page)

url_queue.put(initial_page)

while(True): #一直进行直到海枯石烂

if url_queue.size()0:

current_url = url_queue.get()#拿出队例中第一个的url

store(current_url) #把这个url代表的网页存储好

for next_url in extract_urls(current_url): #提取把这个url里链向的url

if next_url not in seen:

seen.put(next_url)

url_queue.put(next_url)

else:

break

写得已经很伪代码了。

所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。

2)效率

如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。

问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。

通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example

注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]

好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。

3)集群化抓取

爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...

那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?

我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)

考虑如何用python实现:

在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。

代码于是写成

#slave.py

current_url = request_from_master()

to_send = []

for next_url in extract_urls(current_url):

to_send.append(next_url)

store(current_url);

send_to_master(to_send)

#master.py

distributed_queue = DistributedQueue()

bf = BloomFilter()

initial_pages = ""

while(True):

if request == 'GET':

if distributed_queue.size()0:

send(distributed_queue.get())

else:

break

elif request == 'POST':

bf.put(request.url)

好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及后处理

虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。

但是如果附加上你需要这些后续处理,比如

有效地存储(数据库应该怎样安排)

有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)

有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...

及时更新(预测这个网页多久会更新一次)

如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,

“路漫漫其修远兮,吾将上下而求索”。

所以,不要问怎么入门,直接上路就好了:)

Python中Django如何使用?

django1.9.5python3.4.4

文件结构

在一个爬虫脚本中将爬取的数据通过django自带的model保存到数据库

修改的文件(其余pycharm新建Django项目生成,未修改):

# testapp/models.pyfrom django.db import models?class Problem(models.Model): ? ?title = models.CharField(max_length=100, default="") ? ?author = models.CharField(max_length=100, default="")??? def __str__(self):??????? return self.title ? ?pass# testapp/spider.pyimport osimport sysimport django?pathname = os.path.dirname(os.path.abspath(__file__))sys.path.insert(0, pathname)sys.path.insert(0, os.path.abspath(os.path.join(pathname, '..')))os.environ.setdefault("DJANGO_SETTINGS_MODULE", "testproject.settings")?django.setup()?from testapp.models import Problem?if __name__ == "__main__": ? ?p = Problem(title="hi", author="hi") ? ?p.save() ? ?pass# testproject/setting.py......INSTALLED_APPS = [ ?? 'django.contrib.admin', ? ?'django.contrib.auth', ? ?'django.contrib.contenttypes', ? ?'django.contrib.sessions', ? ?'django.contrib.messages', ? ?'django.contrib.staticfiles', ? ?# 添加应用 ? ?'testapp',]......# testapp/admin.py 在后台管理界面注册 Problemfrom django.contrib import admin?# Register your models here.?from testapp.models import Problemadmin.site.register(Problem)

运行spider.py,添加一条实例记录

运行Django项目, 创建管理员账号, 后台管理界面查看结果

Python爬虫如何写?

先检查是否有API

API是网站官方提供的数据接口,如果通过调用API采集数据,则相当于在网站允许的范围内采集,这样既不会有道德法律风险,也没有网站故意设置的障碍;不过调用API接口的访问则处于网站的控制中,网站可以用来收费,可以用来*访问上限等。整体来看,如果数据采集的需求并不是很独特,那么有API则应优先采用调用API的方式。

数据结构分析和数据存储

爬虫需求要十分清晰,具体表现为需要哪些字段,这些字段可以是网页上现有的,也可以是根据网页上现有的字段进一步计算的,这些字段如何构建表,多张表如何连接等。值得一提的是,确定字段环节,不要只看少量的网页,因为单个网页可以缺少别的同类网页的字段,这既有可能是由于网站的问题,也可能是用户行为的差异,只有多观察一些网页才能综合抽象出具有普适性的关键字段——这并不是几分钟看几个网页就可以决定的简单事情,如果遇上了那种臃肿、混乱的网站,可能坑非常多。

对于大规模爬虫,除了本身要采集的数据外,其他重要的中间数据(比如页面Id或者url)也建议存储下来,这样可以不必每次重新爬取id。

数据库并没有固定的选择,本质仍是将Python里的数据写到库里,可以选择关系型数据库MySQL等,也可以选择非关系型数据库MongoDB等;对于普通的结构化数据一般存在关系型数据库即可。sqlalchemy是一个成熟好用的数据库连接框架,其引擎可与Pandas配套使用,把数据处理和数据存储连接起来,一气呵成。

数据流分析

对于要批量爬取的网页,往上一层,看它的入口在哪里;这个是根据采集范围来确定入口,比如若只想爬一个地区的数据,那从该地区的主页切入即可;但若想爬全国数据,则应更往上一层,从全国的入口切入。一般的网站网页都以树状结构为主,找到切入点作为根节点一层层往里进入即可。

值得注意的一点是,一般网站都不会直接把全量的数据做成列表给你一页页往下翻直到遍历完数据,比如链家上面很清楚地写着有24587套二手房,但是它只给100页,每页30个,如果直接这么切入只能访问3000个,远远低于真实数据量;因此先切片,再整合的数据思维可以获得更大的数据量。显然100页是系统设定,只要超过300个就只显示100页,因此可以通过其他的筛选条件不断细分,只到筛选结果小于等于300页就表示该条件下没有缺漏;最后把各种条件下的筛选结果集合在一起,就能够尽可能地还原真实数据量。

明确了大规模爬虫的数据流动机制,下一步就是针对单个网页进行解析,然后把这个模式复制到整体。对于单个网页,采用抓包工具可以查看它的请求方式,是get还是post,有没有提交表单,欲采集的数据是写入源代码里还是通过AJAX调用JSON数据。

同样的道理,不能只看一个页面,要观察多个页面,因为批量爬虫要弄清这些大量页面url以及参数的规律,以便可以自动构造;有的网站的url以及关键参数是加密的,这样就悲剧了,不能靠着明显的逻辑直接构造,这种情况下要批量爬虫,要么找到它加密的js代码,在爬虫代码上加入从明文到密码的加密过程;要么采用下文所述的模拟浏览器的方式。

数据采集

之前用R做爬虫,不要笑,R的确可以做爬虫工作;但在爬虫方面,Python显然优势更明显,受众更广,这得益于其成熟的爬虫框架,以及其他的在计算机系统上更好的性能。scrapy是一个成熟的爬虫框架,直接往里套用就好,比较适合新手学习;requests是一个比原生的urllib包更简洁强大的包,适合作定制化的爬虫功能。requests主要提供一个基本访问功能,把网页的源代码给download下来。一般而言,只要加上跟浏览器同样的Requests Headers参数,就可以正常访问,status_code为200,并成功得到网页源代码;但是也有某些反爬虫较为严格的网站,这么直接访问会被禁止;或者说status为200也不会返回正常的网页源码,而是要求写验证码的js脚本等。

下载到了源码之后,如果数据就在源码中,这种情况是最简单的,这就表示已经成功获取到了数据,剩下的无非就是数据提取、清洗、入库。但若网页上有,然而源代码里没有的,就表示数据写在其他地方,一般而言是通过AJAX异步加载JSON数据,从XHR中找即可找到;如果这样还找不到,那就需要去解析js脚本了。

解析工具

源码下载后,就是解析数据了,常用的有两种方法,一种是用BeautifulSoup对树状HTML进行解析,另一种是通过正则表达式从文本中抽取数据。

BeautifulSoup比较简单,支持Xpath和CSSSelector两种途径,而且像Chrome这类浏览器一般都已经把各个结点的Xpath或者CSSSelector标记好了,直接复制即可。以CSSSelector为例,可以选择tag、id、class等多种方式进行定位选择,如果有id建议选id,因为根据HTML语法,一个id只能绑定一个标签。

正则表达式很强大,但构造起来有点复杂,需要专门去学习。因为下载下来的源码格式就是字符串,所以正则表达式可以大显身手,而且处理速度很快。

对于HTML结构固定,即同样的字段处tag、id和class名称都相同,采用BeautifulSoup解析是一种简单高效的方案,但有的网站混乱,同样的数据在不同页面间HTML结构不同,这种情况下BeautifulSoup就不太好使;如果数据本身格式固定,则用正则表达式更方便。比如以下的例子,这两个都是深圳地区某个地方的经度,但一个页面的class是long,一个页面的class是longitude,根据class来选择就没办法同时满足2个,但只要注意到深圳地区的经度都是介于113到114之间的浮点数,就可以通过正则表达式"11[3-4].\d+"来使两个都满足。

数据整理

一般而言,爬下来的原始数据都不是清洁的,所以在入库前要先整理;由于大部分都是字符串,所以主要也就是字符串的处理方式了。

字符串自带的方法可以满足大部分简单的处理需求,比如strip可以去掉首尾不需要的字符或者换行符等,replace可以将指定部分替换成需要的部分,split可以在指定部分分割然后截取一部分。

如果字符串处理的需求太复杂以致常规的字符串处理方法不好解决,那就要请出正则表达式这个大杀器。

Pandas是Python中常用的数据处理模块,虽然作为一个从R转过来的人一直觉得这个模仿R的包实在是太难用了。Pandas不仅可以进行向量化处理、筛选、分组、计算,还能够整合成DataFrame,将采集的数据整合成一张表,呈现最终的存储效果。

写入数据库

如果只是中小规模的爬虫,可以把最后的爬虫结果汇合成一张表,最后导出成一张表格以便后续使用;但对于表数量多、单张表容量大的大规模爬虫,再导出成一堆零散的表就不合适了,肯定还是要放在数据库中,既方便存储,也方便进一步整理。

写入数据库有两种方法,一种是通过Pandas的DataFrame自带的to_sql方法,好处是自动建表,对于对表结构没有严格要求的情况下可以采用这种方式,不过值得一提的是,如果是多行的DataFrame可以直接插入不加索引,但若只有一行就要加索引否则报错,虽然这个认为不太合理;另一种是利用数据库引擎来执行SQL语句,这种情况下要先自己建表,虽然多了一步,但是表结构完全是自己控制之下。Pandas与SQL都可以用来建表、整理数据,结合起来使用效率更高。

如何把爬虫写入Django的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于怎么用爬虫爬小说、如何把爬虫写入Django的信息别忘了在本站进行查找喔。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
苹果电脑电池充不进电苹果电脑充不进去电是怎么回事 苹果电脑不充电没反应苹果电脑充电指示灯不亮充不了电怎么办 狗狗更加忠诚护家、善解人意,养一只宠物陪伴自己,泰迪能长多大... 描写泰迪狗的外形和特点的句子 国外留学有用吗 花钱出国留学有用吗 !这叫什么号 百万医疗赔付后是否可以续保 前一年理赔过医疗险还能续保吗? 医疗住院险理赔后还能购买吗? 前后端交互防密码抓包(前后端加解密) 智齿没长出来可以拔吗 未萌出的智齿怎么拔 还没长出来的智齿需要拔吗 吸烟和吸二手烟哪个危害大 蛇进家门预示着啥 蛇进家门预示着什么 蛇进家门预示着啥蛇进家门预示着什么 南昌市有什么娱乐的地方?告诉我吧~~同学聚会 十大防盗门品牌 十大防盗门品牌排行榜 防盗门什么牌子的门质量好 中国门业十大品牌有哪些 怎么制作个人网站,有哪些主要步骤 如何建网站,网站建设的步骤有哪些 联发科天玑8000相当于骁龙多少? 鸽子窝公园在北戴河还是在秦皇岛 独自去秦皇岛北戴河鸽子窝公园旅游,是种怎样的体验? ...为什么手写字的时候老是断线,写不出一个完整的字来呢?是什么原因呢... 我一个同事会才你手里的字,有谁知道他是怎么做到的? 有首歌高潮的时候第一句歌词是原谅我不能什么什么的有 歌词原谅我不能经常在家是什么音乐 如何安装摄像头(自己买监控摄像头容易安装吗) 四川的省会是什么,与哪三国相邻 微信号冻结了别人还能搜到这个微信号么,微信号冻结到底什么意思 新浪微博被冻结后是不是就搜不到这个人了? 三国包括今天的哪里,从面积上看魏蜀吴差不多,那实力差距有多大_百度知 ... 纯中药降压药效果怎么样 哪种中药降压药好??? 水库施肥养鱼过程 多次以借条形式借款不还可以起诉吗? 债务纠纷原告篡改借条咋办 民间借贷如何强制执行有哪些可以借条 挽回不了怎么办? 无法挽回的人要挽回吗:无法挽回的感情该怎么处置 ...豆腐2.4kg那么生产1000克豆腐需要黄豆多少千克? 10千伏的高压电机低于多少伏停机 cellweb5是什么软件 元宇宙归属哪个etf(元宇宙包括哪些) ...可它最重只能发50kg,可我的是0.625kg我要怎样写 手机号和微信号都不用了,如何找回健康通行码?_百度问一问 手机号和微信号都不用了,如何找回健康通行码?