什么是切变模量?
发布网友
发布时间:2024-09-26 07:04
我来回答
共1个回答
热心网友
时间:2024-10-04 20:27
剪切模量(modulus of rigidity),材料常数,是剪切应力与应变的比值。又称切变模量或刚性模量。材料的力学性能指标之一。是材料在剪切应力作用下,在弹性变形比例极限范围内,切应力与切应变的比值。它表征材料抵抗切应变的能力。模量大,则表示材料的刚性强。
剪切模量的倒数称为剪切柔量,是单位剪切力作用下发生切应变的量度,可表示材料剪切变形的难易程度。剪切模量内力计算播报刚度参数γ,所使用的混凝土的剪切模量G可取等于0。425E,E是混凝土的弹性模量。剪切模量G和弹性模量E、泊松比μ之间有关系:G=E/(2(1+μ))。
剪切模量材料测试播报剪切模量随着纤维增强复合材料产品的广泛应用,且产品设计均采用计算机,特别是航天航空部门、军工产品,计算越来越精确,因此,对材料性能要求更全面,如要求测出复合材料层板的层间剪切模量G13,G23等性能。根据我们的长期实践经验及理论分析,可以应用GB/T1456三点外伸梁弯曲法来测试复合材料层板的G13、G23等。
三点外伸梁弯曲法的特点是,可以用梁外伸端的位移(挠度)独立地计算出梁材料的弯曲弹性模量。由梁当中的挠度及外伸端的位移(挠度)可以一次计算出梁材料的层间剪切模量,不必像文献等解联立方程,其优越性显著。剪切模量筑坝石料播报测量剪切模量的仪器工开采的碎石(堆石料)是堆石坝主要的筑坝材料,为了较好地把握堆石料的等效动剪切模量和等效阻尼比特性,为堆石坝地震反应分析时的材料参数选取提供依据,笔者采用新研制的高精度大型液压伺服三轴仪,对若干堆石坝工程的十余种模拟堆石料进行等效动剪切模量与等效阻尼比试验,按统一的经验公式进行必要的参数换算或均化处理,给出了堆石料最大等效动剪切模量的估算式,并将其与国内外8座堆石坝现场弹性波试验深入比较,对各种堆石料的等效动剪切模量、等效阻尼比与动剪应变幅的依赖关系进行综合分析,给出试验的统计结果,建议了归一化等效动剪切模量与动剪应变幅以及等效阻尼比与动剪切应变幅关系的取值范围。
剪切模量试料试验本文试验用料均为人工开采的堆石料,根椐实际工程设计级配要求和三轴仪试样直径模拟的试料级配曲线如图1所示。其中,公伯峡堆石坝的3种主堆石料采用的是同一种级配曲线。表1列出各试料的岩性、平均粒径、不均匀系数、初始孔隙比以及围压等试验条件。
除了瀑布沟和关门山堆石料外,其它堆石料的试验均在等向固结条件下进行,振动时采用不排水状态。试样制备采用分层压实法,试验振动频率均为0。1Hz。土的非线性性质通常采用等效线性模型,即把土视为粘弹性体,用等效动弹模Eeq(或动剪切模量Geq)和等效阻尼比h这两个参数来反映土的动应力-应变关系的非线性和滞后性,并把它们表示为动应变幅的函数。
需要指出,试验中每级荷载振动12~15次,不同的加荷周次实测的应力-应变滞回曲线多少有一些差别,由此算出的等效动弹模和阻尼比也不完全一样。因此,在分析整理试验成果时,轴向应变、等效动弹模以及阻尼比均以第3次至第10次的平均值给出。剪切模量结果分析2。
1 最大等效动弹模(Eeq)max的确定图二试验所测得最小轴向应变可信度为10-5量级,尽管试验数据中还有小于10-5的一些数据,但其离散度较大。图2给出一组等效动弹模与轴向应变关系的实测结果。以往的研究表明,砂、砾石、软岩无论是静力还是动力荷载条件下,当轴向应变小于10-5时均具有线弹性性质。
因此,如图2所示,本文按εa=10-6~10-5范围内堆石料呈线弹性假定推求最大等效动弹模(Eeq)max。这种方法与现行的一些土工试验规范建议的方法不同,规范建议用1/Eeq与轴向应变εa关系在纵轴上截距的倒数求出最大等效动弹模。事实上,这种方法基于双曲线模型的假定,对堆石料来说1/Eeq~εa并不一定满足直线关系,且在延伸实验数据时含有较多的不确定性或任意性。
2。2 最大等效动剪切模量(Geq)max与平均有效应力σm的关系实测最大等效动弹模(Eeq)max与平均有效应力σm在对数坐标下可以近似地直线关系,表示为(Eeq)max=kσnm (1)式中:k是等效弹模系数,n是模量指数,Eeq和σm的单位是kPa。
为了便于比较,将最大等效动弹模(Eeq)max换算成最大等效动剪切模量(Geq)max,并引入F(e)以消除孔隙比的影响,于是最大等效动剪切模量可表示为(Geq)max=AF(e)σnm (2)式中:A为等效剪切模量系数;e为孔隙比;F(e)=(2。
17-e)2/(1+e)是孔隙比函数;(Geq)max为最大等效动剪切模量,(Geq)max=(Eeq)max/2(1+μ),其中泊桑比μ根据试验条件取值,即不排水状态取0。5。剪应变γ与轴向应变εa的关系为γ=εa(1+μ) (3)表二表2列出13种堆石料的等效弹模系数k、等效剪切模量系数A、模量指数n和孔隙比函数F(e)。
由表2可见,尽管这13种堆石料的岩性及风化程度、初始孔隙比和级配(包括平均粒径、不均匀系数)都有较大的差别,但模量指数n的变化范围大致在0。4~0。6之间。而等效剪切模量系数A的范围较大,从2000到10000之间变化。图3汇总了本文所完成的13种堆石料的试验结果。
为了与现场弹性波试验结果比较,对所有试验数据再进行回归分析给出其平均线和上、下包线。可以看出,平均模量指数为0。5,平均等效动剪切模量系数为7645。图三2。3现场弹性波试验与室内三轴试验结果比较70年代末80年代初,日本电力中央研究所对日本的5座不同岩质的堆石坝进行了弹性波试验并将其试验结果与室内大型三轴试验进行过比较,日本建设省土木研究所曾对三保和七宿两座堆石坝进行过现场弹性波试验和室内大型三轴试验。
笔者等对我国关门山面板堆石坝进行了现场弹性波试验并与文献做过比较分析。本文将再次引用这些成果,将室内试验测得的13种堆石料的平均最大等效动剪切模量及其上、下包线按下式换算成剪切波速进行比较(4)式中:g是重力加速度,9。81m/s2;γt是堆石体密度,t/m3;最大等效动剪切模量(Geq)max的单位应换算成t/m2;剪切波速vs的单位是m/s。
需要说明,式(2)中的平均有效应力 σm=1/3(1+μ)(1+K)γtz (6)式中:泊松比μ取0。35,主应力比K取1。5,z为深度m。图4是现场弹性波试验与室内三轴试验结果比较,其中曲线4是本文图3中建议的平均线方程,曲线5和曲线6分别是图3中的上包线和下包线。
曲线7是关门山面板坝现场弹性波试验成果。图四由此可见,本文室内大型三轴试验给出的范围基本包络了日本和我国的8座堆石坝现场弹性波试验的结果。现代堆石坝采用机械化碾压施工技术,堆石坝体的密度较高且都比较接近,因此8座堆石坝现场弹性波试验结果基本吻合,关门山面板坝的试验结果近似为平均值。
总体来说,室内大型三轴仪试验所得到的结果比现场弹性波试验结果要低一些,这主要是由于实际工程堆石料颗粒间构造安定,而室内试验时堆石材料受到严重扰动以及试样尺寸限制所致。2。4 归一化等效动剪切模量Geq/(Geq)max与动剪应变幅γ关系图5给出归一化等效动剪切模量随动剪应变幅的依赖关系的典型实例,即吉林台与洪家度两座面板堆石坝主堆图五石料的试验结果。
一般来说,归一化等效动剪切模量随动剪应变幅增大而衰减,其衰减的程度主要受围压σc或平均有效应力σm的影响。围压越低,归一化等效动剪切模量衰减就越快(即衰减曲线偏左下侧),这一现象与砂的研究成果类似。由图5可以看出,归一化等效动剪切模量随动剪应变幅变化是有一定范围的,且变化范围因材料不同而异。
洪家渡堆石料的上限比吉林台堆石料略高,且归一化等效动剪切模量随动剪应变幅的变化范围也比吉林台要大一些。但总体上看,两者的差别并不十分显著。为了对各种堆石料的试验结果进行比较,将作者用本文方法测得的各种堆石料的归一化等效动剪切模量与动剪应变幅的依赖关系汇总于图6。
图中每条曲线表示一种试验堆石料Geq/(Geq)max~γ变化范围的平均值。从图中结果可以看出,尽管这些堆石料的岩性和级配等有较大差别,且最大等效动剪切模量的变化范围也较大,但各种堆石料的归一化等效动剪切模量与动剪应变幅的依赖关系的离散性并不大。
为便于应用,本文将图6中各种堆石料的试验结果再做平均处理,建议了一般堆石料归一化等效动剪切模量与动剪应变幅依赖关系的取值范围如图7所示。图6 、7、 8、 92。5 等效阻尼比h与动剪应变幅γ的关系大量的研究表明,动剪切模量越高等效阻尼比就越低,等效阻尼比不仅随动剪应变幅γ的增大而增加,而且还与围压σc或平均有效应力σm有关,在相同的动剪应变幅情况下,围压σc增大,等效阻尼比减小。
此外,固结应力比K对等效阻尼比也有影响,即在相同的围压σc及动剪应变幅情况下,固结应力比K增加则等效阻尼比减小。本文汇总了各种堆石料的等效阻尼比与动剪应变幅的关系如图8,图中每条曲线即代表一种试验堆石料的h~γ变化范围的平均值。可以看出,各种堆石料的等效阻尼比随动剪应变幅变化的离散度比归一化等效动剪切模量随动剪应变幅变化的离散度要大一些。
图9是将图8中各种堆石料的试验结果再做平均处理,建议一般堆石料等效阻尼比与动剪应变幅依赖关系的取值范围。总体上看,堆石料的等效阻尼比不高,当动剪应变幅γ=10-5时,等效阻尼比约2%左右,γ=10-4时,等效阻尼比接近5%,而当动剪应变幅大于γ=10-4后,阻尼比上升得较快,这说明堆石料进入较强的非线性,应变滞后于应力的现象越加明显。
需要指出,等效阻尼比的离散范围比较大,这一方面是堆石料本身含有的不确定性引起,另一方面也与试验数据的分析整理方法有关。剪切模量报告结果(1)本文依据室内高精度大型三轴试验给出的十余种堆石料最大等效动剪切模量的估算公式与国内外8座堆石坝现场弹性波试验结果基本吻合,由此说明,尽管堆石坝筑坝材料的级配、初始孔隙比、岩性以及风化程度等不尽相同,但由于采用重型碾机械化施工,现代堆石坝的实际填筑密度较高,坝体内剪切波速分布也大体接近。
(2)在尚未取得堆石料试验数据的情况下进行堆石坝地震反应分析,可参考本文图3和图4粗略估计最大等效动剪切模量,参考图7和图9确定归一化等效动剪切模量、等效阻尼比与动剪应变幅的关系。选取计算参数时应主要考虑岩质硬度、静抗剪强度等对最大等效动剪切模量以及衰减关系的影响。
应该说,按本文建议公式或给出的范围估算,可以满足工程需要。(3)与粘土和砂相比,筑坝堆石料的试验设备和试验技术方面都存在许多的困难,迄今为止,有关堆石料的动剪切模量和阻尼比方面的试验资料尚不多见,作者将进一步积累资料做深入地研究。剪切模量相关内容播报材料在外力作用下发生变形。
当外力较小时,产生弹性变形。弹性变形是可逆变形,卸载时,变形消失并恢复原状。在弹性变形范围内,其应力与应变之间保持线性函数关系,即服从虎克(Hooke)定律:弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。在工程上,弹性模量则是材料刚度的度量。
实际上,理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等。对非晶体,甚至对某些多晶体,在较小的应力时,可能会出现粘弹性现象。
粘弹性变形是既与时间有关,又具有可恢复的弹性变形,即具有弹性和粘性变形两方面特征。粘弹性变形是高分子材料的重要力学特性之一。当施加的应力超过弹性极限时,材料发生塑性变形,即产生不可逆的永久变形。通过塑性变形,不但可使材料获得预期的外形尺寸,而且可使材料内部组织和性能产生变化。
单晶体塑性变形的两个基本方式为滑移和孪生。滑移和孪生都是切应变,而且只有当外加切应力分量大于晶体的临界分切应力tC时才能开始。然而,滑移是不均匀切变,孪生为均匀切变。对于多晶体而言,要求每个晶粒至少具备由5个独立的滑移系才能满足各晶粒在变形过程中相互制约和协调。
多晶体中,在室温下晶界的存在对滑移起阻碍作用,而且实践证明,多晶体的强度随其晶粒细化而提高,可用著名的Hall-Petch公式来加以描述。
热心网友
时间:2024-10-04 20:31
剪切模量(modulus of rigidity),材料常数,是剪切应力与应变的比值。又称切变模量或刚性模量。材料的力学性能指标之一。是材料在剪切应力作用下,在弹性变形比例极限范围内,切应力与切应变的比值。它表征材料抵抗切应变的能力。模量大,则表示材料的刚性强。
剪切模量的倒数称为剪切柔量,是单位剪切力作用下发生切应变的量度,可表示材料剪切变形的难易程度。剪切模量内力计算播报刚度参数γ,所使用的混凝土的剪切模量G可取等于0。425E,E是混凝土的弹性模量。剪切模量G和弹性模量E、泊松比μ之间有关系:G=E/(2(1+μ))。
剪切模量材料测试播报剪切模量随着纤维增强复合材料产品的广泛应用,且产品设计均采用计算机,特别是航天航空部门、军工产品,计算越来越精确,因此,对材料性能要求更全面,如要求测出复合材料层板的层间剪切模量G13,G23等性能。根据我们的长期实践经验及理论分析,可以应用GB/T1456三点外伸梁弯曲法来测试复合材料层板的G13、G23等。
三点外伸梁弯曲法的特点是,可以用梁外伸端的位移(挠度)独立地计算出梁材料的弯曲弹性模量。由梁当中的挠度及外伸端的位移(挠度)可以一次计算出梁材料的层间剪切模量,不必像文献等解联立方程,其优越性显著。剪切模量筑坝石料播报测量剪切模量的仪器工开采的碎石(堆石料)是堆石坝主要的筑坝材料,为了较好地把握堆石料的等效动剪切模量和等效阻尼比特性,为堆石坝地震反应分析时的材料参数选取提供依据,笔者采用新研制的高精度大型液压伺服三轴仪,对若干堆石坝工程的十余种模拟堆石料进行等效动剪切模量与等效阻尼比试验,按统一的经验公式进行必要的参数换算或均化处理,给出了堆石料最大等效动剪切模量的估算式,并将其与国内外8座堆石坝现场弹性波试验深入比较,对各种堆石料的等效动剪切模量、等效阻尼比与动剪应变幅的依赖关系进行综合分析,给出试验的统计结果,建议了归一化等效动剪切模量与动剪应变幅以及等效阻尼比与动剪切应变幅关系的取值范围。
剪切模量试料试验本文试验用料均为人工开采的堆石料,根椐实际工程设计级配要求和三轴仪试样直径模拟的试料级配曲线如图1所示。其中,公伯峡堆石坝的3种主堆石料采用的是同一种级配曲线。表1列出各试料的岩性、平均粒径、不均匀系数、初始孔隙比以及围压等试验条件。
除了瀑布沟和关门山堆石料外,其它堆石料的试验均在等向固结条件下进行,振动时采用不排水状态。试样制备采用分层压实法,试验振动频率均为0。1Hz。土的非线性性质通常采用等效线性模型,即把土视为粘弹性体,用等效动弹模Eeq(或动剪切模量Geq)和等效阻尼比h这两个参数来反映土的动应力-应变关系的非线性和滞后性,并把它们表示为动应变幅的函数。
需要指出,试验中每级荷载振动12~15次,不同的加荷周次实测的应力-应变滞回曲线多少有一些差别,由此算出的等效动弹模和阻尼比也不完全一样。因此,在分析整理试验成果时,轴向应变、等效动弹模以及阻尼比均以第3次至第10次的平均值给出。剪切模量结果分析2。
1 最大等效动弹模(Eeq)max的确定图二试验所测得最小轴向应变可信度为10-5量级,尽管试验数据中还有小于10-5的一些数据,但其离散度较大。图2给出一组等效动弹模与轴向应变关系的实测结果。以往的研究表明,砂、砾石、软岩无论是静力还是动力荷载条件下,当轴向应变小于10-5时均具有线弹性性质。
因此,如图2所示,本文按εa=10-6~10-5范围内堆石料呈线弹性假定推求最大等效动弹模(Eeq)max。这种方法与现行的一些土工试验规范建议的方法不同,规范建议用1/Eeq与轴向应变εa关系在纵轴上截距的倒数求出最大等效动弹模。事实上,这种方法基于双曲线模型的假定,对堆石料来说1/Eeq~εa并不一定满足直线关系,且在延伸实验数据时含有较多的不确定性或任意性。
2。2 最大等效动剪切模量(Geq)max与平均有效应力σm的关系实测最大等效动弹模(Eeq)max与平均有效应力σm在对数坐标下可以近似地直线关系,表示为(Eeq)max=kσnm (1)式中:k是等效弹模系数,n是模量指数,Eeq和σm的单位是kPa。
为了便于比较,将最大等效动弹模(Eeq)max换算成最大等效动剪切模量(Geq)max,并引入F(e)以消除孔隙比的影响,于是最大等效动剪切模量可表示为(Geq)max=AF(e)σnm (2)式中:A为等效剪切模量系数;e为孔隙比;F(e)=(2。
17-e)2/(1+e)是孔隙比函数;(Geq)max为最大等效动剪切模量,(Geq)max=(Eeq)max/2(1+μ),其中泊桑比μ根据试验条件取值,即不排水状态取0。5。剪应变γ与轴向应变εa的关系为γ=εa(1+μ) (3)表二表2列出13种堆石料的等效弹模系数k、等效剪切模量系数A、模量指数n和孔隙比函数F(e)。
由表2可见,尽管这13种堆石料的岩性及风化程度、初始孔隙比和级配(包括平均粒径、不均匀系数)都有较大的差别,但模量指数n的变化范围大致在0。4~0。6之间。而等效剪切模量系数A的范围较大,从2000到10000之间变化。图3汇总了本文所完成的13种堆石料的试验结果。
为了与现场弹性波试验结果比较,对所有试验数据再进行回归分析给出其平均线和上、下包线。可以看出,平均模量指数为0。5,平均等效动剪切模量系数为7645。图三2。3现场弹性波试验与室内三轴试验结果比较70年代末80年代初,日本电力中央研究所对日本的5座不同岩质的堆石坝进行了弹性波试验并将其试验结果与室内大型三轴试验进行过比较,日本建设省土木研究所曾对三保和七宿两座堆石坝进行过现场弹性波试验和室内大型三轴试验。
笔者等对我国关门山面板堆石坝进行了现场弹性波试验并与文献做过比较分析。本文将再次引用这些成果,将室内试验测得的13种堆石料的平均最大等效动剪切模量及其上、下包线按下式换算成剪切波速进行比较(4)式中:g是重力加速度,9。81m/s2;γt是堆石体密度,t/m3;最大等效动剪切模量(Geq)max的单位应换算成t/m2;剪切波速vs的单位是m/s。
需要说明,式(2)中的平均有效应力 σm=1/3(1+μ)(1+K)γtz (6)式中:泊松比μ取0。35,主应力比K取1。5,z为深度m。图4是现场弹性波试验与室内三轴试验结果比较,其中曲线4是本文图3中建议的平均线方程,曲线5和曲线6分别是图3中的上包线和下包线。
曲线7是关门山面板坝现场弹性波试验成果。图四由此可见,本文室内大型三轴试验给出的范围基本包络了日本和我国的8座堆石坝现场弹性波试验的结果。现代堆石坝采用机械化碾压施工技术,堆石坝体的密度较高且都比较接近,因此8座堆石坝现场弹性波试验结果基本吻合,关门山面板坝的试验结果近似为平均值。
总体来说,室内大型三轴仪试验所得到的结果比现场弹性波试验结果要低一些,这主要是由于实际工程堆石料颗粒间构造安定,而室内试验时堆石材料受到严重扰动以及试样尺寸限制所致。2。4 归一化等效动剪切模量Geq/(Geq)max与动剪应变幅γ关系图5给出归一化等效动剪切模量随动剪应变幅的依赖关系的典型实例,即吉林台与洪家度两座面板堆石坝主堆图五石料的试验结果。
一般来说,归一化等效动剪切模量随动剪应变幅增大而衰减,其衰减的程度主要受围压σc或平均有效应力σm的影响。围压越低,归一化等效动剪切模量衰减就越快(即衰减曲线偏左下侧),这一现象与砂的研究成果类似。由图5可以看出,归一化等效动剪切模量随动剪应变幅变化是有一定范围的,且变化范围因材料不同而异。
洪家渡堆石料的上限比吉林台堆石料略高,且归一化等效动剪切模量随动剪应变幅的变化范围也比吉林台要大一些。但总体上看,两者的差别并不十分显著。为了对各种堆石料的试验结果进行比较,将作者用本文方法测得的各种堆石料的归一化等效动剪切模量与动剪应变幅的依赖关系汇总于图6。
图中每条曲线表示一种试验堆石料Geq/(Geq)max~γ变化范围的平均值。从图中结果可以看出,尽管这些堆石料的岩性和级配等有较大差别,且最大等效动剪切模量的变化范围也较大,但各种堆石料的归一化等效动剪切模量与动剪应变幅的依赖关系的离散性并不大。
为便于应用,本文将图6中各种堆石料的试验结果再做平均处理,建议了一般堆石料归一化等效动剪切模量与动剪应变幅依赖关系的取值范围如图7所示。图6 、7、 8、 92。5 等效阻尼比h与动剪应变幅γ的关系大量的研究表明,动剪切模量越高等效阻尼比就越低,等效阻尼比不仅随动剪应变幅γ的增大而增加,而且还与围压σc或平均有效应力σm有关,在相同的动剪应变幅情况下,围压σc增大,等效阻尼比减小。
此外,固结应力比K对等效阻尼比也有影响,即在相同的围压σc及动剪应变幅情况下,固结应力比K增加则等效阻尼比减小。本文汇总了各种堆石料的等效阻尼比与动剪应变幅的关系如图8,图中每条曲线即代表一种试验堆石料的h~γ变化范围的平均值。可以看出,各种堆石料的等效阻尼比随动剪应变幅变化的离散度比归一化等效动剪切模量随动剪应变幅变化的离散度要大一些。
图9是将图8中各种堆石料的试验结果再做平均处理,建议一般堆石料等效阻尼比与动剪应变幅依赖关系的取值范围。总体上看,堆石料的等效阻尼比不高,当动剪应变幅γ=10-5时,等效阻尼比约2%左右,γ=10-4时,等效阻尼比接近5%,而当动剪应变幅大于γ=10-4后,阻尼比上升得较快,这说明堆石料进入较强的非线性,应变滞后于应力的现象越加明显。
需要指出,等效阻尼比的离散范围比较大,这一方面是堆石料本身含有的不确定性引起,另一方面也与试验数据的分析整理方法有关。剪切模量报告结果(1)本文依据室内高精度大型三轴试验给出的十余种堆石料最大等效动剪切模量的估算公式与国内外8座堆石坝现场弹性波试验结果基本吻合,由此说明,尽管堆石坝筑坝材料的级配、初始孔隙比、岩性以及风化程度等不尽相同,但由于采用重型碾机械化施工,现代堆石坝的实际填筑密度较高,坝体内剪切波速分布也大体接近。
(2)在尚未取得堆石料试验数据的情况下进行堆石坝地震反应分析,可参考本文图3和图4粗略估计最大等效动剪切模量,参考图7和图9确定归一化等效动剪切模量、等效阻尼比与动剪应变幅的关系。选取计算参数时应主要考虑岩质硬度、静抗剪强度等对最大等效动剪切模量以及衰减关系的影响。
应该说,按本文建议公式或给出的范围估算,可以满足工程需要。(3)与粘土和砂相比,筑坝堆石料的试验设备和试验技术方面都存在许多的困难,迄今为止,有关堆石料的动剪切模量和阻尼比方面的试验资料尚不多见,作者将进一步积累资料做深入地研究。剪切模量相关内容播报材料在外力作用下发生变形。
当外力较小时,产生弹性变形。弹性变形是可逆变形,卸载时,变形消失并恢复原状。在弹性变形范围内,其应力与应变之间保持线性函数关系,即服从虎克(Hooke)定律:弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。在工程上,弹性模量则是材料刚度的度量。
实际上,理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等。对非晶体,甚至对某些多晶体,在较小的应力时,可能会出现粘弹性现象。
粘弹性变形是既与时间有关,又具有可恢复的弹性变形,即具有弹性和粘性变形两方面特征。粘弹性变形是高分子材料的重要力学特性之一。当施加的应力超过弹性极限时,材料发生塑性变形,即产生不可逆的永久变形。通过塑性变形,不但可使材料获得预期的外形尺寸,而且可使材料内部组织和性能产生变化。
单晶体塑性变形的两个基本方式为滑移和孪生。滑移和孪生都是切应变,而且只有当外加切应力分量大于晶体的临界分切应力tC时才能开始。然而,滑移是不均匀切变,孪生为均匀切变。对于多晶体而言,要求每个晶粒至少具备由5个独立的滑移系才能满足各晶粒在变形过程中相互制约和协调。
多晶体中,在室温下晶界的存在对滑移起阻碍作用,而且实践证明,多晶体的强度随其晶粒细化而提高,可用著名的Hall-Petch公式来加以描述。