发布网友 发布时间:2024-09-25 18:49
共1个回答
热心网友 时间:2024-10-22 07:59
y=sinx/|x|的间断点类型是跳跃间断点。
因为它的左极限是-1,右极限是1。
设函数f(x)在U(Xo)内有定义,Xo是函数f(x)的间断点(使函数不连续的点),那么如果左连续f(x-)与右连续f(x+)都存在,但f(x-)≠f(x+),则称Xo为f(x)的跳跃间断点,它属于第一间断点。
判断一个函数间断点先找出无定义的点,就是间断点。
然后用左右极限判断是第一类间断点还是第二类间断点,第一类间断点包括第一类可去间断点和第一类不可去间断点,如果该点左右极限都存在,则是第一类间断点,其中如果左右极限相等,则是第一类可去间断点,如果左右极限不相等,则是第一类不可去间断点,即第一类跳跃间断点。如果左右极限中有一个不存在,则第二类间断点。
间断点可以分为无穷间断点和非无穷间断点,在非无穷间断点中,还分可去间断点和跳跃间断点。如果极限存在就是可去间断点,不存在就是跳跃间断点。