发布网友 发布时间:2022-05-06 19:30
共2个回答
热心网友 时间:2023-09-12 22:43
熵 shāng 〈名〉 物理名词,用热量除温度所得的商,标志热量转化为功的程度 [entropy] 物理意义:物质微观热运动时,混乱程度的标志。 热力学中表征物质状态的参量之一,通常用符号S表示。在经典热力学中,可用增量定义为dS=(dQ/T),式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量。下标“可逆”表示加热过程所引起的变化过程是可逆的。若过程是不可逆的,则dS>(dQ/T)不可逆。单位质量物质的熵称为比熵,记为s。熵最初是根据热力学第二定律引出的一个反映自发过程不可逆性的物质状态参量。热力学第二定律是根据大量观察结果总结出来的规律,有下述表述方式:①热量总是从高温物体传到低温物体,不可能作相反的传递而不引起其他的变化;②功可以全部转化为热,但任何热机不能全部地、连续不断地把所接受的热量转变为功(即无法制造第二类永动机);③在孤立系统中,实际发生的过程总使整个系统的熵值增大,此即熵增原理。摩擦使一部分机械能不可逆地转变为热,使熵增加。热量dQ由高温(T1)物体传至低温(T2)物体,高温物体的熵减少dS1=dQ/T1,低温物体的熵增加dS2=dQ/T2,把两个物体合起来当成一个系统来看,熵的变化是dS=dS2-dS1>0,即熵是增加的。 ◎ 物理学上指热能除以温度所得的商,标志热量转化为功的程度。 ◎ 科学技术上泛指某些物质系统状态的一种量(liàng)度,某些物质系统状态可能出现的程度。亦被社会科学用以借喻人类社会某些状态的程度。 ◎ 在信息论中,熵表示的是不确定性的量度。 只有当你所使用的那个特定系统中的能量密度参差不齐的时候,能量才能够转化为功,这时,能量倾向于从密度较高的地方流向密度较低的地方,直到一切都达到均匀为止。正是依靠能量的这种流动,你才能从能量得到功。 江河发源地的水位比较高,那里的水的势能也比河口的水的势能来得大。由于这个原因,水就沿着江河向下流入海洋。要不是下雨的话,*上所有的水就会全部流入海洋,而海平面将稍稍升高。总势能这时保持不变。但分布得比较均匀。 正是在水往下流的时候,可以使水轮转动起来,因而水就能够做功。处在同一个水平面上的水是无法做功的,即使这些水是处在很高的高原上,因而具有异常高的势能,同样做不了功。在这里起决定性作用的是能量密度的差异和朝着均匀化方向的流动。 熵是混乱和无序的度量。熵值越大,混乱无序的程度越大。我们这个宇宙是熵增的宇宙。热力学第二定律体现的就是这个特征。生命是高度的有序,智慧是高度的有序,在一个熵增的宇宙为什么会出现生命?会进化出智慧?(负熵) 。热力学第二定律还揭示了:局部的有序是可能的,但必须以其他地方的更大无序为代价。人生存,就要能量,要食物,要以动植物的死亡(熵增)为代价。万物生长靠太阳。动植物的有序又是以太阳核反应的衰竭(熵增)或其他形式的熵增为代价的。人关在完全封闭的铅盒子里,无法以其他地方的熵增维持自己的负熵。在这个相对封闭的系统中,熵增的法则破坏了生命的有序。熵是时间的箭头,在这个宇宙中是不可逆的。熵与时间密切相关。如果时间停止“流动”,熵增也就无从谈起。“任何我们已知的物质能关住”的东西,不是别的,就是“时间”。低温关住的也是“时间”。生命是物质的有序“结构”。“结构”与具体的物质不是同一个层次的概念。就像大厦的建筑材料和大厦的式样不是同一个层次的概念一样。生物学已经证明,凡是上了岁数的人,身体中的原子,已经没有一个是刚出生时候的了。但是,你还是你,我还是我,生命还在延续。倒是死了的人,没有了新陈代谢,身体中的分子可以保留很长时间。意识是比生命更高层次的有序,可以在生命之间传递。说到这里,我想物质与意识的层次关系应该比较清楚了。(摘自人民网BBS论坛) 不管对哪一种能量来说,情况都是如此。在蒸汽机中,有一个热库把水变成蒸汽,还有一个冷库把蒸汽冷凝成水。起决定性作用的正是这个温度差。在任何单一的、毫无差别的温度下——不管这个温度有多高——是不可能得到任何功的。 “熵”(entropy)是德国物理学家克劳修斯(Rudolf Clausius, 1822 – 1888)在1850年创造的一个术语,他用它来表示任何一种能量在空间中分布的均匀程度。能量分布得越均匀,熵就越大。如果对于我们所考虑的那个系统来说,能量完全均匀地分布,那么,这个系统的熵就达到最大值。 在克劳修斯看来,在一个系统中,如果听任它自然发展,那么,能量差总是倾向于消除的。让一个热物体同一个冷物体相接触,热就会以下面所说的方式流动:热物体将冷却,冷物体将变热,直到两个物体达到相同的温度为止。如果把两个水库连接起来,并且其中一个水库的水平面高于另一个水库,那么,万有引力就会使一个水库的水面降低,而使另一个水面升高,直到两个水库的水面均等,而势能也取平为止。 因此,克劳修斯说,自然界中的一个普遍规律是:能量密度的差异倾向于变成均等。换句话说,“熵将随着时间而增大”。 对于能量从密度较高的地方向密度较低的地方流动的研究,过去主要是对于热这种能量形态进行的。因此,关于能量流动和功--能转换的科学就被称为“热力学”,这是从希腊文“热运动”一词变来的。 人们早已断定,能量既不能创造,也不能消灭。这是一条最基本的定律;所以人们把它称为“热力学第一定律”。 克劳修斯所提出的熵随时间而增大的说法,看来差不多也是非常基本的一条普遍规律,所以它被称为“热力学第二定律”。 描述热力学系统的重要态函数之一。熵的大小反映系统所处状态的稳定情况,熵的变化指明热力学过程进行的方向,熵为热力学第二定律提供了定量表述。 为了定量表述热力学第二定律,应该寻找一个在可逆过程中保持不变,在不可逆过程中单调变化的态函数。克劳修斯在研究卡诺热机时,根据卡诺定理得出了对任意循环过程都都适用的一个公式 ,式中Q是系统从温度为T的热源吸收的微小热量,等号和不等号分别对应可逆和不可逆过程。可逆循环的表明存在着一个态函数熵,可定义为另一式(参见相关著述)。 对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。这就是熵增加原理。由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。 能量是物质运动的一种量度,形式多样,可以相互转换。某种形式的能量如内能越多表明可供转换的潜力越大。熵原文的字意是转变,描述内能与其他形式能量自发转换的方向和转换完成的程度。随着转换的进行,系统趋于平衡态,熵值越来越大,这表明虽然在此过程中能量总值不变,但可供利用或转换的能量却越来越少了 。 内能 、 熵和热力学第一、第二定律使人们对与热运动相联系的能量转换过程的基本特征有了全面完整的认识。 从微观上说,熵是组成系统的大量微观粒子无序度的量度,系统越无序、越混乱,熵就越大。热力学过程不可逆性的微观本质和统计意义就是系统从有序趋于无序,从概率较小的状态趋于概率较大的状态。 产生这种现象的原因也很简单,既自然界通向无序的方法远多于通向有序的方法,打个比方,让一群学生在操场上站好队,需要一些手段,但要他们在操场上乱跑,就很简单了。 信息论中的熵:信息的度量单位。信息论的创始人Shannon在其著作《通信的数学理论》中提出了建立在概率统计模型上的信息度量。他把信息定义为“用来消除不确定性的东西”。 Shannon公式:I(A)=-logP(A) I(A)度量事件A发生所提供的信息量,称之为事件A的自信息,P(A)为事件A发生的概率。如果一个随机试验有N个可能的结果或一个随机消息有N个可能值,若它们出现的概率分别为p1,p2,…,pN,则这些事件的自信息的平均值: H=-SUM(pi*log(pi)),i=1,2…N。H称为熵。 在信息论中,熵可用作某事件不确定度的量度。信息量越大,体系结构越规则,功能越完善,熵就越小。利用熵的概念 ,可以从理论上研究信息的计量 、传递 、变换 、存储。此外,熵在控制论、概率论、数论、天体物理、生命科学等领域也都有一定的应用。 在物理学中,玻尔兹曼说:“当能量被减少时,原子就呈现为一种更无序的状态。”熵是对无序的一种度量:那是一个意义深远的概念,该概念就来源于玻尔兹曼的新的解释。另人吃惊的是,可制作一种度量无序的方法,那就是特殊状态的概率——在次被定义为原子聚集方式的数量。他十分精确的表示为: S=KlogW S是熵,它与给定状态的概率W的对数值成正比,K是比例常数,现在称为玻尔兹曼常数。 如果不是玻尔兹曼,我们的进步将会倒退几十年,也许一百年。 他那不朽的公式S=KlogW刻在他的墓碑上。 熵最早是热力学上的一个符号,表达的是某一系统内部热量平均化的程度。而后,这个概念被许多其他学科借用,引伸出更多的概念。但是不管在学科间如何变化,其表达的概念总是一个,就是,系统内部物质分布平均化程度。熵如今已经成为一个广义化的概念而非物理学独有的了。 熵是一个物理概念,以日常语言来说,往往就是失序.但熵与常识中的失序有很大的不同热力学第二定律说的是,封闭系统的熵,总植无法降低.所谓封闭系统就是,就是质与能都无法自由进出的系统.热心网友 时间:2023-09-12 22:43
定律内容:热量从高温物体流向低温物体是不可逆的。 克劳修斯引入了熵的概念来描述这种不可逆过程。 在热力学中,熵是系统的状态函数,它的物理表达式为: S =∫dQ/T或ds = dQ/T 其中,S表示熵,Q表示热量,T表示温度。 该表达式的物理含义是:一个系统的熵等于该系统在一定过程中所吸收(或耗散)的热量除以它的绝对温度。可以证明,只要有热量从系统内的高温物体流向低温物体,系统的熵就会增加: S =∫dQ1/T1+∫dQ2/T2 假设dQ1是高温物体的热增量,T1是其绝对温度; dQ2是低温物体的热增量,T2是其绝对温度, 则:dQ1 = -dQ2,T1>T2 于是上式推演为:S = |∫dQ2/T2|-|∫dQ1/T1| > 0 这种熵增是一个自发的不可逆过程,而总熵变总是大于零。 孤立系统总是趋向于熵增,最终达到熵的最大状态,也就是系统的最混乱无序状态。但是,对开放系统而言,由于它可以将内部能量交换产生的熵增通过向环境释放热量的方式转移,所以开放系统有可能趋向熵减而达到有序状态。 熵增的热力学理论与几率学理论结合,产生形而上的哲学指导意义:事物的混乱程度越高,则其几率越大。 现代科学还用信息这个概念来表示系统的有序程度。信息本来是通讯理论中的一个基本概念,指的是在通讯过程中信号不确定性的消除。后来这个概念推广到一般系统,并将信息量看作一个系统有序性或组织程度的量度,如果一个系统有确定的结构,就意味着它已经包含着一定的信息。这种信息叫做结构信息,可用来表示系统的有序性;结构信息量越大,系统越有序。因此,信息意味着负熵或熵的减少。