发布网友 发布时间:2024-08-11 15:42
共1个回答
热心网友 时间:2024-08-22 18:14
两矩阵相似有:特征值是相同的,行列式也是一样的,相似就合同,两个矩阵主对角线的和是一样的。如果矩阵相似,那么其代表的就是不同坐标系(基)的同一个线性变换。
可以得出:<=>正负惯性指数相同<=>正惯性指数,秩相同=>秩相同特征值是相同的,行列式也是一样的,相似就合同,两个矩阵主对角线的和是一样的。如果矩阵相似,那么其代表的就是不同坐标系(基)的同一个线性变换。
几何光学:
采用近轴近似(英语:paraxial approximation),假若光线与光轴之间的夹角很小,则透镜或反射元件对于光线的作用,可以表达为2×2矩阵与向量的乘积。这向量的两个分量是光线的几何性质(光线的斜率、光线跟光轴之间在主平面。
这矩阵称为光线传输矩阵(英语:ray transfer matrix),内中元素编码了光学元件的性质。对于折射,这矩阵又细分为两种:“折射矩阵”与“平移矩阵”。折射矩阵描述光线遇到透镜的折射行为。平移矩阵描述光线从一个主平面传播到另一个主平面的平移行为。