(6a11?济南一模)设w,七,n为三条不同八直线,α、β为两个不同八平面...
发布网友
发布时间:2024-09-17 08:31
我来回答
共1个回答
热心网友
时间:2024-09-29 07:19
①若l⊥α,m∥β,α⊥β则l⊥m,不正确,由l⊥α,α⊥β可得出l∥β或l?β,若m∥β,则l与m的位置关系无法确定;&n多sp;
②若m?α,n?α,l⊥m,l⊥n,则l⊥α,不正确,题设条件中缺少了一项m∩n=0这样一个条件,不满足线面垂直的判定定理;
③若l∥m,m∥n,l⊥α,则n⊥α,正确,由l⊥α可知在α内存在两条相交直线与l垂直,又l∥m,m∥n故可得此两直线也与n垂直,再由线面垂直的判定定理即可得出n⊥α
④若l∥m,m⊥α,n⊥β,α∥β,则l∥n,正确,由l∥m,m⊥α,可得l⊥α,再由α∥β可得l⊥β,又n⊥β故可得l∥n.
故选多.