双十字相乘法怎么用
发布网友
发布时间:2022-05-06 18:43
我来回答
共1个回答
热心网友
时间:2023-09-10 19:36
就跟单十字相乘法差不多,只是要双面考虑。1.双十字相乘法
分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.
例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为
2x2-(5+7y)x-(22y2-35y+3),
可以看作是关于x的二次三项式.
2.求根法
我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如
f(x)=x2-3x+2,g(x)=x5+x2+6,…,
当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)
f(1)=12-3×1+2=0;
f(-2)=(-2)2-3×(-2)+2=12.
若f(a)=0,则称a为多项式f(x)的一个根.
定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.
根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.