发布网友 发布时间:2024-08-18 15:22
共1个回答
热心网友 时间:2024-08-29 11:41
肌酸激酶的相关研究主要集中在多个领域,包括其在生物能量代谢中的作用、肌肉中的角色、稳定性以及分子生物学方面的探究。Lehninger的《生物能》一书中对其进行了基础介绍([1] Lehninger A L. Bioenergetics, 2nd.. Benjamin, Menlo Park. 1977. 67-77)。Seraydrarian和Abbot的研究则详细讨论了肌酸激酶系统在肌肉中的功能([2] Seraydrarian M W and Abbot B C. The role of the creatine phosphokinase system in muscle. J. Mol. Cell. Cardiol. 1976, 8: 741~746)。
Shain的临床化学研究探讨了肌酸激酶和乳酸脱氢酶的稳定性,以及它们在储存的人类血浆和前列腺组织提取物中的活性变化([3] Shain S A. Creatine kinase and lactate dehydrogenase: stability of isoenzymes and their activity in stored human plasma and prostatic tissue extracts and effect of sample dilution. Clin. Chem., 1983, 29: 832~835)。Kwiatkowski等人通过对鸡肌酸激酶-M的分子克隆和完整核苷酸序列的分析,进一步深入了这一领域的知识([4] Kwiatkowski R W, Schweinfest C W and Dottin R P. Molecular cloning and the complete nucleotide sequence of the creatine kinase-M cDNA from chicken. Nucleic. Acids Res. 1984, 12: 6952~6934)。
后续的研究还揭示了肌酸激酶的不同组织特异性同工酶之间的氨基酸序列相似性([5] Pickering L, Pang H, Biemann K, et al. Two tissue-specific isozymes of creatine kinase have closely matched amino acid sequences. Proc. Natl. Acad. Sci. USA, 1985, 82: 2310~2314)。分子结构预测和序列分析也提供了更多关于肌酸激酶同工酶的信息([6] Muhlebach S M, Gross M, Wirz T, et al. Sequence Homology and Structure Predictions of the Creatine-Kinase Isoenzymes. Mol.Cell. Biochem., 1994, 133: 245~262)。
此外,研究还关注了肌酸激酶在疾病诊断中的应用,如Sobel等人关于心肌梗死估计的探讨([8] Sobel B E, Markham J and Roberts R. Factors influencing enzymatic estimates of infarct size. Am. J. Cardiol., 1977, 39: 130~132; [9] Sobel B E. Applications and limitations of estimation of infarct size from serial changes in plasma creatine phosphokinase activity. Acta Med. Scand. Suppl., 1976, 587: 151~167)。
人类和犬的肌酸激酶纯化技术也被详细研究([10] Kouttinen A. Purification of human and canine creatine kinase isozymes. Acta Med.Scand.Suppl. 1978, 623: 115~117)。晶体结构研究提供了肌酸激酶分子级的见解,如Rao等人的兔肌肉激酶结构分析([11] Rao J K, Bujacz G, and Alexander W. 1998. Crystal structure of rabbit muscle creatine kinase. FEBS Lett. 439: 133–137)和Shen等人的人类肌肉肌酸激酶结构([12] Shen Y Q, Tang L, Zhou H M et al. and Lin Z J. Structure of human muscle creatine kinase. ACTA CRYSTALLOGR D-BIOL CRYST, 2001, 57:1196-1200)。
此外,肌酸激酶的复性与重构过程也是研究热点,包括不同条件下的动力学研究([13] Bickerstaff, G.F., Paterson, C., and Price, N.C. 1980. The refolding of denatured rabbit muscle creatine kinase. Biochim. Biophys. Acta 621: 305–314; [14] Hou, L.X., Zhou, H.M., Yao, Q.Z., and Tsou, C.L. 1983. A comparative study of renaturation and reactivation kinetics of the guanidine denatured creatine kinase. Acta Biochim. Biophys. Sin. 15: 393–397; [15] Grossman, S.H. 1984. Fluorescence analysis of denaturation and reassembly of dansylated creatine kinase. Biochim. Biophys. Acta 785: 61–67; [16] Zhou, H.M. and Tsou, C.L. 1986. Comparison of activity and conformation changes during refolding of urea-denatured creatine kinase. Biochim. Biophys. Acta 869: 69–74; [17] Wang, Z.F, Yang, Y., and Zhou, H.M. 1995. Conformational changes of active sites during refolding of urea-denatured creatine kinase. Biochimie 77: 953–956; [18] Yang, Y., Park, Y.D., Yu, T.W., and Zhou, H.M. 1999. Reactivation and refolding of a partially folded creatine kinase modified by 5,5_-Dithio-bis(2-nitrobenzoic acid). Biochem. Biophys. Res. Commun. 259: 450–454)。
肌酸激酶 (Creatine Kinase, CK) (ATP: Creatine N-phosphotransferase EC 2.7.3.2)通常存在于动物的心脏、肌肉以及脑等组织的细胞浆和线粒体中,是一个与细胞内能量运转、肌肉收缩、ATP再生有直接关系的重要激酶1,2,它可逆地催化肌酸与ATP之间的转磷酰基反应。