发布网友 发布时间:2024-09-09 15:18
共1个回答
热心网友 时间:2024-11-19 07:27
导读:今天首席CTO笔记来给各位分享关于python按概率取值范围是多少的相关内容,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
如何在Python中实现这五类强大的概率分布R编程语言已经成为统计分析中的事实标准。但在这篇文章中,我将告诉你在Python中实现统计学概念会是如此容易。我要使用Python实现一些离散和连续的概率分布。虽然我不会讨论这些分布的数学细节,但我会以链接的方式给你一些学习这些统计学概念的好资料。在讨论这些概率分布之前,我想简单说说什么是随机变量(randomvariable)。随机变量是对一次试验结果的量化。
举个例子,一个表示抛硬币结果的随机变量可以表示成
Python
1
2
X={1如果正面朝上,
2如果反面朝上}
随机变量是一个变量,它取值于一组可能的值(离散或连续的),并服从某种随机性。随机变量的每个可能取值的都与一个概率相关联。随机变量的所有可能取值和与之相关联的概率就被称为概率分布(probabilitydistributrion)。
我鼓励大家仔细研究一下scipy.stats模块。
概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布。
离散概率分布也称为概率质量函数(probabilitymassfunction)。离散概率分布的例子有伯努利分布(Bernoullidistribution)、二项分布(binomialdistribution)、泊松分布(Poissondistribution)和几何分布(geometricdistribution)等。
连续概率分布也称为概率密度函数(probabilitydensityfunction),它们是具有连续取值(例如一条实线上的值)的函数。正态分布(normaldistribution)、指数分布(exponentialdistribution)和β分布(betadistribution)等都属于连续概率分布。
若想了解更多关于离散和连续随机变量的知识,你可以观看可汗学院关于概率分布的视频。
二项分布(BinomialDistribution)
服从二项分布的随机变量X表示在n个独立的是/非试验中成功的次数,其中每次试验的成功概率为p。
E(X)=?np,Var(X)=?np(1?p)
如果你想知道每个函数的原理,你可以在IPython笔记本中使用helpfile命令。?E(X)表示分布的期望或平均值。
键入stats.binom?了解二项分布函数binom的更多信息。
二项分布的例子:抛掷10次硬币,恰好两次正面朝上的概率是多少?
假设在该试验中正面朝上的概率为0.3,这意味着平均来说,我们可以期待有3次是硬币正面朝上的。我定义掷硬币的所有可能结果为k=np.arange(0,11):你可能观测到0次正面朝上、1次正面朝上,一直到10次正面朝上。我使用stats.binom.pmf计算每次观测的概率质量函数。它返回一个含有11个元素的列表(list),这些元素表示与每个观测相关联的概率值。
您可以使用.rvs函数模拟一个二项随机变量,其中参数size指定你要进行模拟的次数。我让Python返回10000个参数为n和p的二项式随机变量。我将输出这些随机变量的平均值和标准差,然后画出所有的随机变量的直方图。
泊松分布(PoissonDistribution)
一个服从泊松分布的随机变量X,表示在具有比率参数(rateparameter)λ的一段固定时间间隔内,事件发生的次数。参数λ告诉你该事件发生的比率。随机变量X的平均值和方差都是λ。
E(X)=?λ,Var(X)=?λ
泊松分布的例子:已知某路口发生事故的比率是每天2次,那么在此处一天内发生4次事故的概率是多少?
让我们考虑这个平均每天发生2起事故的例子。泊松分布的实现和二项分布有些类似,在泊松分布中我们需要指定比率参数。泊松分布的输出是一个数列,包含了发生0次、1次、2次,直到10次事故的概率。我用结果生成了以下图片。
你可以看到,事故次数的峰值在均值附近。平均来说,你可以预计事件发生的次数为λ。尝试不同的λ和n的值,然后看看分布的形状是怎么变化的。
现在我来模拟1000个服从泊松分布的随机变量。
正态分布(NormalDistribution)
正态分布是一种连续分布,其函数可以在实线上的任何地方取值。正态分布由两个参数描述:分布的平均值μ和方差σ2?。
E(X)=?μ,Var(X)=?σ2
正态分布的取值可以从负无穷到正无穷。你可以注意到,我用stats.norm.pdf得到正态分布的概率密度函数。
β分布(BetaDistribution)
β分布是一个取值在?[0,1]?之间的连续分布,它由两个形态参数α和β的取值所刻画。
β分布的形状取决于α和β的值。贝叶斯分析中大量使用了β分布。
当你将参数α和β都设置为1时,该分布又被称为均匀分布(uniformdistribution)。尝试不同的α和β取值,看看分布的形状是如何变化的。
指数分布(ExponentialDistribution)
指数分布是一种连续概率分布,用于表示独立随机事件发生的时间间隔。比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔、中文维基百科新条目出现的时间间隔等等。
我将参数λ设置为0.5,并将x的取值范围设置为$[0,15]$。
接着,我在指数分布下模拟1000个随机变量。scale参数表示λ的倒数。函数np.std中,参数ddof等于标准偏差除以$n-1$的值。
结语(Conclusion)
概率分布就像盖房子的蓝图,而随机变量是对试验事件的总结。我建议你去看看哈佛大学数据科学课程的讲座,JoeBlitzstein教授给了一份摘要,包含了你所需要了解的关于统计模型和分布的全部。
python数据类型都有哪些
数据类型是每种编程语言必备的属性,只有给数据赋予明确的数据类型,计算机才能对数据进行处理运算,因此,使用正确的数据类型是十分有必要的,以下是Python编程常用的数据类型:
一、数字型
Python数字类型主要包括int(整型)、long(长整型)和float(浮点型),但是在Python3中就不再有long类型了。
1、int(整型)
在32位机器上,整数的位数是32位,取值范围是-231~231-1,即-2147483648~214748364;在64位系统上,整数的位数为64位,取值范围为-263~263-1,即9223372036854775808~9223372036854775807。
2、long(长整型)
Python长整型没有指定位宽,但是由于机器内存有限,使用长的长整数数值也不可能无限大。
3、float(浮点型)
浮点型也就是带有小数点的数,其精度和机器有关。
4、complex(复数)
Python还支持复数,复数由实数部分和虚数部分构成,可以用a+bj,或者complex(a,b)表示,复数的实部a和虚部b
都是浮点型。
二、字符串
在Python中,加了引号的字符都被认为是字符串,其声明有三种方式,分别是:单引号、双引号和三引号;Python中的字符串有两种数据类型,分别是str类型和unicode类型,str类型采用的ASCII编码,无法表示中文,unicode类型采用unicode编码,能够表示任意字符,包括中文和其他语言。
三、布尔型
和其他编程语言一样,Python布尔类型也是用于逻辑运算,有两个值:True(真)和False(假)。
四、列表
列表是Python中使用最频繁的数据类型,集合中可以放任何数据类型,可对集合进行创建、查找、切片、增加、修改、删除、循环和排序操作。
五、元组
元组和列表一样,也是一种序列,与列表不同的是,元组是不可修改的,元组用”()”标识,内部元素用逗号隔开。
六、字典
字典是一种键值对的集合,是除列表以外Python之中最灵活的内置数据结构类型,列表是有序的对象集合,字典是无序的对象集合。
七、集合
集合是一个无序的、不重复的数据组合,它的主要作用有两个,分别是去重和关系测试。
python中概率问题importrandom
defradomIt(a,b,c,d):
r=random.randint(0,9)
ifrin[0]:
returna
elifrin[1,2]:
returnb
elifrin[3,4,5]:
returnc
elifrin[6,7,8,9]:
returnd
结语:以上就是首席CTO笔记为大家介绍的关于python按概率取值范围是多少的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。