发布网友 发布时间:2024-09-07 02:14
共1个回答
热心网友 时间:2024-10-06 18:34
求不定积分时才需要加绝对值,微分方程的通解并非全部解,不加绝对值无非是通解多了一些,无关紧要,书上也是这么处理的,统统不加,记住就好,考试时候不加没事的。
微分方程研究的来源:它的研究来源极广,历史久远。牛顿和G.W.莱布尼茨创造微分和积分运算时,指出了它们的互逆性,事实上这是解决了最简单的微分方程y'=f(x)的求解问题。
偏微分方程:
常微分方程(ODE)是指微分方程的自变量只有一个的方程。最简单的常微分方程,未知数是一个实数或是复数的函数,但未知数也可能是一个向量函数或是矩阵函数,后者可对应一个由常微分方程组成的系统。
热心网友 时间:2024-10-06 18:34
求不定积分时才需要加绝对值,微分方程的通解并非全部解,不加绝对值无非是通解多了一些,无关紧要,书上也是这么处理的,统统不加,记住就好,考试时候不加没事的。
微分方程研究的来源:它的研究来源极广,历史久远。牛顿和G.W.莱布尼茨创造微分和积分运算时,指出了它们的互逆性,事实上这是解决了最简单的微分方程y'=f(x)的求解问题。
偏微分方程:
常微分方程(ODE)是指微分方程的自变量只有一个的方程。最简单的常微分方程,未知数是一个实数或是复数的函数,但未知数也可能是一个向量函数或是矩阵函数,后者可对应一个由常微分方程组成的系统。
热心网友 时间:2024-10-06 18:34
求不定积分时才需要加绝对值,微分方程的通解并非全部解,不加绝对值无非是通解多了一些,无关紧要,书上也是这么处理的,统统不加,记住就好,考试时候不加没事的。
微分方程研究的来源:它的研究来源极广,历史久远。牛顿和G.W.莱布尼茨创造微分和积分运算时,指出了它们的互逆性,事实上这是解决了最简单的微分方程y'=f(x)的求解问题。
偏微分方程:
常微分方程(ODE)是指微分方程的自变量只有一个的方程。最简单的常微分方程,未知数是一个实数或是复数的函数,但未知数也可能是一个向量函数或是矩阵函数,后者可对应一个由常微分方程组成的系统。
热心网友 时间:2024-10-06 18:34
求不定积分时才需要加绝对值,微分方程的通解并非全部解,不加绝对值无非是通解多了一些,无关紧要,书上也是这么处理的,统统不加,记住就好,考试时候不加没事的。
微分方程研究的来源:它的研究来源极广,历史久远。牛顿和G.W.莱布尼茨创造微分和积分运算时,指出了它们的互逆性,事实上这是解决了最简单的微分方程y'=f(x)的求解问题。
偏微分方程:
常微分方程(ODE)是指微分方程的自变量只有一个的方程。最简单的常微分方程,未知数是一个实数或是复数的函数,但未知数也可能是一个向量函数或是矩阵函数,后者可对应一个由常微分方程组成的系统。