发布网友 发布时间:2024-09-07 07:52
共2个回答
热心网友 时间:2024-10-01 09:09
设z=x+iy
a=m+in (m、n为常数)
az(共轭)+a(共轭)z
=(m+in)(x-iy)+(m-in)(x+iy)
=2mx+2ny
z=x+iy是复平面的直线,所以只需令直线方程为
2mx+2ny=c (c为常数)
即可
因此,对于复平面上的直线ax+by+c=0(其中a,b,c为实常数,a不等于0,x,y是实数变量)
满足(a/2+ib/2)(x-iy)+(a/2-ib/2)(x+iy)= -c/2
简介
复数平面即是z=a+bi ,它对应的坐标为(a,b) .其中,a表示的是复平面内的横坐标,b表示的是复平面内的纵坐标,表示实数a的点都在x轴上,所以x轴又称为“实轴”;表示纯虚数bi的点都在y轴上,所以y轴又称为“虚轴”。y轴上有且仅有一个实点即为原点"0"。
热心网友 时间:2024-10-01 09:13
设z=x+iy