已知tanx=3,计算:(2cosx-3sinx)/(2sinx+3cosx)
发布网友
发布时间:2024-09-29 04:21
我来回答
共3个回答
热心网友
时间:2024-10-01 01:23
解:设A=∫cosx/(2sinx+3cosx)dx,B=∫sinx/(2sinx+3cosx)dx,则
3A+2B=3∫cosx/(2sinx+3cosx)dx+2∫sinx/(2sinx+3cosx)dx=∫dx=x+C1
2A-3B=∫2cosx/(2sinx+3cosx)dx-∫3sinx/(2sinx+3cosx)dx=∫(2cosx-3sinx)/(2sinx+3cosx)dx
=∫d[(2sinx+3cosx)]/[(2sinx+3cosx)]=ln|2sinx+3cosx|+C2
解得
A=1/13*[(3x+3C1+2ln|2sinx+3cosx|+2C2]=1/13*[(3x+2ln|2sinx+3cosx|+3C1+2C2]=
1/13*(3x+2ln|2sinx+3cosx|)+C
热心网友
时间:2024-10-01 01:23
式子上下同时除以cosx便可得(2-3tanx)/(2tanx+3)
将tanx=3代入,便可得到结果。
热心网友
时间:2024-10-01 01:24
(2cosx-3sinx)/(2sinx+3cosx) 【分子分母同除以cosx】
=(2-3tanx)/(2tanx+3)
=-7/9
已知tanx=3,计算:(2cosx-3sinx)/(2sinx+3cosx)
解:设A=∫cosx/(2sinx+3cosx)dx,B=∫sinx/(2sinx+3cosx)dx,则 3A+2B=3∫cosx/(2sinx+3cosx)dx+2∫sinx/(2sinx+3cosx)dx=∫dx=x+C1 2A-3B=∫2cosx/(2sinx+3cosx)dx-∫3sinx/(2sinx+3cosx)dx=∫(2cosx-3sinx)/(2sinx+3cosx)dx =∫d[(2sinx+3cosx)]/[(2sinx+3cos...
已知tanx=2,计算(1)、2cosx-3sinx/sinx+cosx。(2)、sinx+cosx-sinx
tanx=sinx/cosx=2 sinx=2cosx 1 (2cosx-3sinx)/(sinx+cosx)=(sinx-3sinx)/(sinx+sinx/2)=-2/(3/2)=-4/3 2 sinx+cosx-sinx=cosx sin²x+cos²x=1 3cos²x=1 cosx=±√3/3 原式=±√3/3
4-|||-已知tanx=3,求-4cosx-sinx/3sinX2cosX的值?
= -4cos(x) - (1 / (2 * 9cos^2(x))).因为我们已知 tan(x) = 3,所以可以得到 cos(x) = 1 / √(1 + tan^2(x))cos(x) = 1 / √(1 + 3^2) = 1 / √(1 + 9) = 1 / √(10) = √(10) / 10。将 cos(x) = √(10) / 10 代入到化简后的表达式中,我们...
已知tanx=3,求下列各式的值。 (1)2sinxcosx; (2)(1-2sinxcosx)/(cosx^...
1.因为tanx>0,所以sinx和cosx同号,不妨令二者同正sinx/cosx=3,(sinx)^2+(cosx)^2=1 联立,得sinx=3√10/10,cosx=√10/10,所以2sinxcosx=0.6 2.利用第一问结论,原式=0.4/(-0.8)=-0.32 希望满意,有问题随时交流
已知tanx=3,则(2sinx+cosx)/(sinx-2cosx)=?,求具体
上下同除以cosx 因为sinx/cosx=tanx 所以原式=(2tanx+1)/(tanx-2)=7
已知tanX=1/2,求下列各式的值 (1)2cosX-3sinX/3cosX+4sinX (2)sin^2X...
(1)分子分母除以cosX (2-3tanX)/(3+4tanX)=(1/2)/(3+2)=1/10 (2)添加分母,1=(sinX)^2+(cosX)^2,分子分母除以(cosX)^2有((tanX)^2-3tanX+4)/((tanX)^2+1)=(1/4-3/2+4)/(1/4+1)=(11/4)/(5/4)=11/5
已知tanx=2求sinx-3cosx分之3sinx+cosx的值,
(3sinx+cosx)/(sinx-3cosx)=(3tanx+1)/(tanx-3)(分子分母同除以cosx)=-7
已知tanx=2则(sinx-3cosx)÷(sinx+3cosx)=?
(sinx-3cosx)/(sinx+3cosx),分子分母同除以cosx =(tanx-3)/tanx+3)=(2-3)/(2+3)=-1/5
已知tanx=3。(1)求1/3sin +2cos x的值;。(2)求sin x—2sinXcosX+cos...
由tanx=3得出sinx=3/√10 cosx=1/ √10 求1/3sin +2cos x=1/3*9/10+2*1/10=1/2 sin x—2sinXcosX+cos x=(sinx-cosx)^2=2/5
已知tanx=3,求4(sinx)^2-3sinxcosx=?
sinx/cosx=tanx=3 sinx=3cosx 带入恒等式sin²x+cos²x=1 所以cos²x=1/10 sin²x=9/10 sinxcosx=(3cosx)cosx=3cos²x=3/10 原式=36/10-9/10=27/10