发布网友 发布时间:2022-05-10 03:00
共3个回答
热心网友 时间:2023-10-25 03:43
1、定义不同
凡含有参数,未知函数和未知函数导数 (或微分) 的方程,称为微分方程,有时简称为方程,未知函数是一元函数的微分方程称作常微分方程,未知函数是多元函数的微分方程称作偏微分方程。微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶。
2、解决方法不同
对于偏微分方程问题的讨论和解决,往往需要应用泛函分析、代数与拓扑学、微分几何学等其它数学分支的理论和方法。
大部分的常微分方程求不出十分精确的解,而只能得到近似解。当然,这个近似解的精确程度是比较高的。另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。
3、应用范围不同
偏微分方程的解法还可以用分离系数法,也叫做傅立叶级数;还可以用分离变数法,也叫做傅立叶变换或傅立叶积分。分离系数法可以求解有界空间中的定解问题,分离变数法可以求解无界空间的定解问题;也可以用拉普拉斯变换法去求解一维空间的数学物理方程的定解。
常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。
参考资料来源:百度百科-常微分方程
参考资料来源:百度百科-偏微分方程
热心网友 时间:2023-10-25 03:43
呵呵,常微分方程是求带有导数的方程,比如说y'+4y-2=0这样子的,偏微分方程是解决带有偏导数的方程。常微分方程比较简单,只是研究带有导数的方程、方程组之类的通解、特解,现实生活中的很多问题与常微分方程有关系,所以研究起来很有必要。但是对于很多高尖端的问题都是偏微分方程,比如很多著名的物理方程:热传导方程、拉普拉斯方程等等,这就是的偏微分方程很难,它不仅仅是研究方程解的一门学科,因为有些方程很难,根本就求不出解,或者常规方法求解十分困难,所以偏微分方程还着重研究解的分布、状态等等。热心网友 时间:2023-10-25 03:44
未知数的个数不一样