已知sinA+sinB=sinC,cosA+cosB=cosC,求cos(A-B)的值
发布网友
发布时间:2天前
我来回答
共2个回答
热心网友
时间:2024-10-16 08:31
sinA+sinB=sinC,cosA+cosB=cosC
(sinA)^2+(sinB)^2+2sinAsinB=(sinC)^2
(cosA)^2+(cosB)^2+2cosAcosB=(cosC)^2
(sinA)^2+(cosA)^2+(sinB)^2+(cosB)^2+2sinAsinB+2cosAcosB=(sinC)^2+(cosC)^2
1+1+2sinAsinB+2cosAcosB=1
sinAsinB+cosAcosB=-1/2
cos(A-B)=-1/2
热心网友
时间:2024-10-16 08:31
{sinA+sinB=sinC (1)
{cosA+cosB=cosC (2)
(1)²+(2)²得
(sinA+sinB)²+(cosA+cosB)²=sin²C+cos²C
sin²A+2sinAsinB+sin²B+cos²A+2cosAcosB+cos²B=1
(sin²A+sin²B)+(cos²A++cos²B)+2(cosAcosB+sinAsinB)=1
1+1+2(cosAcosB+sinAsinB)=1
cosAcosB+sinAsinB=-1/2
cos(A-B)=-1/2
已知sinA+sinB=sinC,cosA+cosB=cosC,求cos(A-B)的值
cos(A-B)=-1/2
救急:已知sinA+sinB=sinC,cosA+cosB=cosC,求cos(A+B)的值
cosA+cosB=cosC 两个式子分别平方 (sinA+sinB)^2=sinC^2 (cosA+cosB)^2=cosC^2 sinA^2+2sinAsinB+sinB^2=sinC^2 cosA^2+2cosAcosB+cosB^2=cosC^2 两式相加 2+2(cosAcosB+sinAsinB)=1 cosAcosB+sinAsinB=-1/2 cos(A+B)=cosAcosB+sinAsinB=-1/2 ...
已知sinA+sinB=sinC,cosA+cosB=cosC,求cos的值
ABC是三角形内角吧 sinA+sinB=sinC cosA+cosB=cosC 两边平方,然后相加 (sin²A+cos²A)+(sin²B+cos²B)+2(cosAcosB+sinAsinB)=sin²C+cos²C 1+1+2cos(A-B)=1 所以cos(A-B)=-1/2
已知sinA+sinB+sinC=0,cosA+cosB+cosC=0,求cos的值
求coa(A-B)因为(sinc)^2=(sina+sinb)^2=(sina)^2+2sina*sinb+(sinb)^2,同理(cosc)^2=(cosa)^2+2cosa*cosb+(cosb)^2,所以相加得1=1+2(cosa*cosb+sina*sinb)+1,所以cos(a-b)=-1/2。
sinA+sinB+sinC=0,cosA+cosB+cosC=o,则cos(A-B)=__
解:sinA+sinB=-sinC cosA+cosB=-cosC 两式分别左右平方,后相加得 2+2(cosAcosB+sinAsinB)=1 所以 cosAcosB+sinAsinB=-1/2 cos(A-B)=cosAcosB+sinAsinB=-1/2
sina+sinb+sinc=0, cosa+cosb+cosc=0,则cos(a-b)的值为?
cos(a-b)=cosacosb+sinasinb 因为sina+sinb+sinc=0 移项得sina+sinb=-sinc 两边都平方得1+2sinasinb=sin^2c 同理1+2cosacosb=cos^2c 所以 cos(a-b)=(sin^2c-1+cos^2c-1)/2 =[(sin^2c+cos^2c)-2]/2 =-1/2
sinA+sinB+sinC=0,cosA+cosB+cosC=0,则cos(A-B)的值是多少?
解:因为(sinc)^2 =(sina+sinb)^2 =(sina)^2+2sina*sinb+(sinb)^2,同理(cosc)^2 =(cosa)^2+2cosa*cosb+(cosb)^2,所以相加得=1+2(cosa*cosb+sina*sinb)+1,所以cos(a-b)=-1/2。请点击下面的【选为满意回答】按钮。如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢...
已知sina+sinb+sinc=0且cosa+cosb+cosc=0 求cos(a-b)的值
sina+sinb=-sinc;cosa+cosb=-cosc;两式平方再相加,化简 得cosa*cosb+sina*sinb=-1/2;∴cos(a-b)=cosa*cosb+sina*sinb=-1/2
sina+sinb=sinc,cosa+cosb=cosc,求cos(a-c)=
cos(a-c)=cos a sin c+sin a cos c =cos a(sina+sinb)+sin a(cosa+cosb)=2 sin a cos a+(cos a sin b-sin a cos b)=sin 2a+cos(a-b)
若sina+sinb+sinr=0,cosa+cosb+cosr=0,则cos(a-b)=?
∵sina+sinb+sinr=0 ∴sinr=-(sina+sinb) ① ∵cosa+cosb+cosr=0 ∴cosr=-(cosa+cosb) ② ①^2+②^2,得到 1=(sina+sinb)^2+(cosa+cosb)^2 =2+2(sinasinb+cosacosb)=2+2cos(a-b)∴cos(a-b)=-1/2