已知函数f(x)=ax(a>0且a≠1).(1)当a=e时,g(x)=mx2(m>0,x∈R),①求H...
发布网友
发布时间:2024-10-12 08:29
我来回答
共1个回答
热心网友
时间:2024-10-29 21:50
(1)①H(x)=f(x)g(x)=mx2ex,则H'(x)=mxex(x+2)>0得x>0或x<-2,
所以H(x)=f(x)g(x)的单调增区间为(0,+∞),(-∞,-2).
②当m>0时,曲线y=f(x)与曲线y=g(x)的公共点个数即方程ex=mx2根的个数.
由ex=mx2得1m=x2ex设h(x)=x2ex,h′(x)=x(2-x)ex,
所以在R上不间断的函数h(x)=x2ex在(-∞,0)上递减,在(0,2)上递增,在(2,+∞)上递减,
又因为m>0,h(0)=0,h(2)=4e2,h(4)=16e4,h(-2)=4e2,
所以当h(2)<1m≤h(-2)时一公共点,解得14e2≤m<e24,
当0<1m<h(4)或1m=h(2)时两公共点,解得m=e24或m>e416,
当h(4)≤1m<h(2)时三公共点,解得e24<m≤e416;
(2)设A(x1,f(x1)),B(x2,f(x2))(x1<x2)则kAB=f(x2)-f(x1)x2-x1,kD=f′(x1+x22),
则kAB-kD=ax2-ax1x2-x1-ax1+x22?lna=ax2+x12x2-x1[ax2-x12-ax1-x22-(x2-x1)lna],
设x2-x12=t>0,L(x)=at-a-t-2tlna,则L'(x)=lna(at+a-t-2),
①当a>1时,at>1,lna>0,则L'(t)=(lna)(at+a-t-2)>0,
所以L(t)在(0,+∞)递增,则L(t)>L(0)=0,
又因为ax1+x22x2-x1>0,所以ax1+x_2x2-x1?[ax2-x12-ax1-x22-(x2-x1)lna]>0,
所以kAB-kD>0;
②当0<a<1时,0<at<1,lna<0
则L'(t)=lna(at+a-t-2)<0,所以L(t)在(0,+∞)递减,则L(t)<L(0)=0,
又因为ax2+x12x2-x1>0,所以ax2+x12x2-x1[ax2-x12-ax1-x22-(x2-x1)lna]<0,
所以kAB-kD<0,
综上:当a>1时kAB>kD;当0<a<1时kAB<kD.