已知函数y=f(x)=Asin(wx+φ)(其中A>0,w>0,0<φ<π/2)的周期为π,且图象...
发布网友
发布时间:2024-10-03 17:58
我来回答
共2个回答
热心网友
时间:2024-10-29 06:43
【参考答案】
2π/w=π,即w=2
函数最小值是-3,得A=3
-3=f(2π/3)
=3sin[2×(2π/3)+φ]
=3sin[(4π/3)+φ]
=-3sin[(π/3)+φ]
则 sin[(π/3)+φ]=1
即 π/3+ φ=π/2
即 φ=π/6
所以 f(x)=3sin(2x+ π/6)
f(x)<3/2即
3sin(2x+ π/6)<3/2
sin(2x+ π/6)<1/2
则 :2x+ π/6<2kπ+(π/6)或2x+ π/6>(5π/6)+2kπ
即 x<kπ或x>kπ+(π/3)
不理解欢迎追问,满意记得采纳。。
热心网友
时间:2024-10-29 06:39
y=f(x)=Asin(wx+φ)(其中A>0,w>0,0<φ<π/2)
周期为π,T=2π/w=π,w=2
y=Asin(2x+φ)
图象上有一个最低点(2π/3,-3):2x+φ=4π/3+φ=2kπ±π/2;φ=2kπ-11π/6,或φ=2kπ-5π/6; 0<φ<π/2;∴φ=2π-11π/6 = π/6
y=Asin(2x+π/6)
-3=Asin(2×2π/3+π/6)=Asin(3π/2)=-A
A=3
f(x)解析式:y=3sin(2x+π/6)
f(x)<3/2
3sin(2x+π/6)<3/2
sin(2x+π/6)<1/2
2x∈(2kπ+5π/6,2kπ+13π/6)
x∈(kπ+5π/12,kπ+13π/12)其中k∈Z