如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD...
发布网友
发布时间:2024-10-03 20:15
我来回答
共2个回答
热心网友
时间:2024-10-03 22:10
(1)∵四边形ABCD是正方形,
∴AE∥CF,
又∵AE=CF,
∴四边形AEFC是平行四边形,
故EF∥AC.
(2)连接BG
∵四边形ABCD是正方形,且EF∥AC,
∴∠DEG=∠DAC=45°,∠DGE=∠DCA=45°;
故∠CFG=∠DEG=45°,∠CGF=∠DGE=45°,
∴∠CGF=∠CFG,CG=CF;
∵AE=CF,
∴AE=CG;
在△ABE与△CBG中,
AB=BCAE=CG,
∴△ABE≌CBG(HL),
∴BE=BG;
又∵BE=EG,
∴BE=BG=EG,△BEG是等边三角形,
故∠BEF=60°.
(3)延长EA到M,使AH=CG;过点M作MK⊥BE于点K;
∵△BEG是等边三角形,
∴∠EBG=60°,
∴∠ABE+∠CBG=90°-60°=30°;
在△ABM与△BCG中,
BA=BCAM=CG,
∴△ABM≌△BCG(HL),
∴BM=BC=4,∠ABM=∠CBG;
故∠ABM+∠ABE=∠ABE+∠CBG=30°,
∴MK=12BH=2,
∴△BME的面积=12×4×2=4,△BAE的面积═12×4=2.
热心网友
时间:2024-10-03 22:13
66666666