问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

关于星空的资料简单

发布网友 发布时间:2024-10-07 19:44

我来回答

1个回答

热心网友 时间:2024-10-08 13:19

参宿四(Betelgeuse)为参宿第四星,又称猎户座 α 星(α Orionis),是一颗处于猎户座的红超巨星(猎户座一等星)。它是夜空中除太阳外第十二亮的恒星。
参宿四的位置在著名的猎户腰带附近
参宿四是很容易在夜空中发现的,它就出现在著名的猎户腰带附近,并且肉眼就可以看见它发出的橙红色光芒。在北半球,从每年的一月开始,可以看见它于日落时从东方升起。在 3 月中旬,这颗恒星在黄昏时已经在南方的天空中,而且几乎全球各地的居住者都可以看见,仅仅只有南极洲少数几个位置在南纬 82° 更南边的偏远研究站才看不见。在南半球的大城市 (像是雪梨、布宜诺斯艾利斯、和开普敦),参宿四的高度角几乎可以达到地平线上 49°。一旦来到 5 月,就只能在太阳刚西沉之际在西方地平线上惊鸿一瞥了。
参宿四的视星等是 +0.50,它的平均亮度是天球上的第十亮星,正好就在水委一的后面。但因为参宿四是一颗变星,它的光度变化范围在 0.0 ~ +1.3 之间,因此有的时候它的光度会超越水委一,成为全天第九亮星。参宿七也是一样,它通常的视星等是 +0.13,但报告指出光度有 +0.03 ~ +0.18 的波动,这也可能使参宿四偶尔会比参宿七明亮而成为全天第九亮星。当它最暗时,会比第十九亮的天津四还要暗,并与十字架三竞争第二十名的位置。
来自 ESO 的甚大望远镜所显示的图像,不仅有恒星的盘面,还有以前不知道的被气体围绕着的烟羽伴随着扩展的大气层。
参宿四的 B-V 色指数是 +1.85,在图形上指出这是个极度"红色"的天体。光球有着扩展的大气层,光谱中呈现强烈的发射线而不是吸收线,这是一颗恒星外面有着浓厚的气体包壳时出现的现象。取决于光球层径向速度的波动,这些扩展的气体曾经被观察到远离和朝向参宿四移动的运动。这颗恒星的辐射能只有 13% 的是经由可见光发射出来,而大部分的辐射都在红外线的波段。如果眼睛可以感觉到所有辐射的波长,参宿四可能会成为全天空最亮的恒星。
视差
自从白塞尔在 1838 年成功的测量出视差,天文学家就对参宿四的距离极为困惑,不确定性使得许多恒星的参数值很难得到正确的估计。准确的距离和角直径将揭示恒星的半径和有效温度,导出清楚的解读热辐射的光度;光度与同位素丰度结合可以提供对恒星年龄和质量的估计。在 1920 年,当第一次以干涉仪研究恒星的直径时,假设视差是 0.18 角秒。这等同于距离是 56 pc,或是 180 光年,这样不仅获得的恒星半径不正确,恒星的特征也不同。在这之后,有些进行的调查将这神秘的实际距离建议为高达 400 pc,或是 1300 ly。
在依巴谷星表公布之前(1997),有两份受人尊重的出版物有参宿四最新的视差资料。第一份是耶鲁大学天文台(1991)公布的视差是 π = 9.8 ± 4.7 mas,相当于距离大约是 102 pc,或是 330 ly。第二份是依巴谷输入星表(1993),它的三角视差是 π = 5 ± 4 mas,相当于 200 pc 或是 680 ly,几乎是耶鲁估计值的两倍。这种不确定性,使研究人员对距离估计使用宽松的范围,这种现象引燃了许多的争议,不仅仅是在恒星的距离上,还影响到其它的恒星参数。
参宿四
图片显示的是美国国家无线电天文台坐落在新墨西哥州索科洛的甚大天线阵 (Very Large Array,VLA)。27 只天线每只的重量是 230 t,需要时可以在阵列中的轨道上移动,以使用孔径合成干涉仪进行详细的研究。
期待已久的依巴谷任务结果终于在 1997 年发表 (释出)。解决了这一个问题,新的视差值是 π = 7.63 ± 1.64 mas,这相当于 131 pc,或是 430 ly。因为像参宿四这种变光星,会造成具体的问体影响到它们距离的量化。因此,大尺度误差很可能是恒星引起的,可能与希巴科斯光度 HP波 段 3.4 mA 级的光中心运动有关。
在这次的争论中,电波天文学的最新发展似乎占了上风。格雷厄姆和同事们使用美国国家无线电天文台 (NRAO) 的甚大天线阵 (VLA),以新的高空间分辨率和多波长无线电对参宿四位置的指引,获得更精确的估计值,加上依巴谷的资料,提供了新的天文测量解答:π = 5.07 ± 1.10 mas,在严谨的误差因子下得出的距离是 197 ± 45 pc 或 643 ± 146 ly。
接下来在计算上的突破将可能来自欧洲空间局即将进行的盖亚任务,它将承担详细的分析每一颗被观测恒星的物理性质,揭示亮度、温度、重力和成分。盖亚将多次测量每一个亮度暗达 20 星等和比 15 等亮的天体位置,精确度达到 24 微角秒,相当于从 1000 km 外测量的人发直径。携带的检测设备将确保能测量像参宿四这种变星在最暗时的极限,这将解决较早时依巴谷任务位置上绝大部分的局限性。事实上,对最近的那些恒星,将能以小于 0.001% 的误差因子来测量他们的距离。即使是靠近银河中心的恒星,距离大约是 3 × 10^4 ly,距离测量上的误差也将在小于 20% 以内。
光度变化
参宿四的紫外线影像
参宿四的紫外线影像,显示出恒星的不对称脉动,扩展和收缩。
作为胀缩变化恒星"SRc"的次分类,研究人员提供了不同的假设试图解释参宿四反复无常的舞蹈,这导致其视星等在 0.0 和 +1.3 之间的振荡现象。以我们了解的恒星结构认为是这颗超巨星的外层逐渐的膨胀和收缩,造成表面积 (光球)交替的增加和减少,和温度的上升和降低-因此导致测量到这颗恒星的亮度有节奏的在最暗的 +1.3 等和最亮的 0.0 等之间变化着。像参宿四这种红超巨星,因为大气层本来就不稳定因此会通过脉动的方法。当恒星收缩,它吸收越来越多通过的能量,造成大气层被加热和膨胀。反过来,当恒星膨胀时,它的大气层变得稀薄,允许较多的能量逃逸出去并使温度下降,因此启动一个新的收缩阶段。在计算恒星的脉动和模型都很困难的情况下,看来有几个交错的周期。在上个世纪的 1930 年代,Stebbins 和 Sanford 的研究论文指出有一个由 150 ~ 300 天的短周期变化调制成的大约5.7年的规则循环变化周期。
太阳结构显示出光球的米粒斑
图解的太阳结构显示出光球的米粒斑:
1. 核心
2. 辐射层
3. 对流层
4. 光球层
5. 色球层
6. 日冕
7. 太阳黑子
8. 米粒斑
9. 日珥
事实上,超巨星始终显示不规则的光度、极化和光谱的变化,这指出在恒星的表面和扩展的大气层有着复杂的活动。对照于受到监测的大多数巨星都是有着合理的规则周期的长周期变星,红巨星通常都是半规则或不规则的,有着脉动特性的变星。在 1975 年,Martin Schwarzschild 发表了一篇具有里程碑意义的论文,认为光度起伏不定的变化是因为一些巨大的对流细胞(米粒斑的模式)覆盖在恒星表面所导致的。在太阳,这些对流细胞,或是称为太阳米粒,代表热传导的一种重要模式-因未那些对流元素主宰著太阳光球的亮度变化。太阳的米粒组织典型的直径大约是 2000 km 的大小 (大约相当于印度的表面积),深度大约 700 km。在太阳表面大约有 2 × 10^6 个这样的米粒斑覆盖着光球,如此巨大的数量产生相对恒定的通量。在这些米粒斑之下,连结著 5000 ~ 10000 个平均直径 30000 km,深度达到 10000 km 的超米粒斑。对照之下,Schwardschild 认为像参宿四这样的恒星可能只有一打左右像怪兽的米粒斑,直径达 1.8 × 10^8 km 或更大而足以支配恒星的表面,深度达 6 × 10^6 km,这是因为红巨星的包层温度和密度都很低,导致对流的效率极低。因此,如果在任何时间都只能看见三分之一的对流细胞,它们所观测到的光度随着时间的变化就可能反映出恒星整体的光度变化。
Schwarzschild 的巨大对流细胞主宰巨星和红巨星表面的假说似乎有张贴在天文讨论社区,当哈柏太空望远镜在 1995 年首度直接捕捉到参宿四表面神秘的热点时,天文学家就将它归因为对流。两年后,天文学家揭露至少有三个亮点造成观测到这颗恒星错综复杂的亮度分布不对称,其幅度"符合表面的对流热点"。然后在 2000 年,另一组由哈佛 · 史密松天体物理中心(Cfa) 的 Alex Lobel 领导的小组,注意到参宿四湍流的大气层中冷与热的气流展示出肆虐的风暴。小组推测在恒星大气层中大片活力充沛的气体同时向不同的方向膨胀,抛射出长长的温热气体羽流进入寒冷的尘埃包层。另一种解释是温热的气体在横越恒星较冷的区域时造成激波的出现。这个团队研究参宿四大气层的时间超过 5 年,使用的是哈勃太空望远镜影像摄谱仪在 1998 ~ 2003 年的资料。他们发现在色球层上活动的气泡,在恒星的一边抛起气体,当落在另一边时,好像慢动作翻腾的熔岩灯。
角直径
天文学家面对的第三个挑战是测量恒星的角直径。在 1920 年 12 月 13 日,参宿四成为第一颗在太阳之外曾经被测量出直径的天体。虽然干涉仪仍处在发展的初期,经由实验已经成功的证明参宿四有一个 0.047" 的均匀盘面。天文学家对周边昏暗的见解视值得注意的,除了 10% 的测量误差,小组得出的结论是由于沿着恒星边缘部分的光度强烈的减弱,盘面可能还要大 17%,因此角直径大约是 0.055"。从那时已来,已有其他的研究在进行,得到的范围从 0.042 ~ 0.069 角。结合历史上估计的距离,从 180 ~ 815 ly,与这些资料,得到恒星盘面的直径无论何处都在 2.4 ~ 17.8 AU,因此相对来说半径是 1.2 ~ 8.9 AU 使用如同太阳系的标准,火星的轨道大约是 1.5 AU,在小行星带的谷神星是 2.7 AU,木星是 5.5 AU。因此,取决于参宿四与地球的实际距离,光球层可以扩展至超出木星轨道的距哩,但不能确定是否会远达土星的 9.5 AU。
电波的影像显示出参宿四光球层的大小(圆圈)和使恒星不对称的大气层扩展至土星轨道之外的对流力效应。
有几个原因使精确的直径很难定义:
1.光球收缩和膨胀的节奏,如理论所建议的,意味着直径不是永远不变;
2.由于周边昏暗造成从中心向外延伸的越远光的颜色改变和辐射衰减越多,而没有明确定义的"边界";
3.参宿四被从恒星逐出的物质组成的星周包层环绕着。这些物质吸收和辐射光线造成光球层的边界很难定义;
4.在电磁频谱内以不同的波长测量,每个波长透露一些不同的东西。研究显示可见光的波长有较大的角直径,在近红外线减至最小,不料在中红外线再次增加。报告的直径差异可已多达 30 ~ 35%,但因为不同的波长测量不同的东西,将一种结论与另一种比较是有问题的;
5.大气层的闪烁使得地面上的望远镜因为大气湍流的影响降低了解像力的极限角度值。
为了克服这些限制,研究人员采用了各种方案解决。天文干涉仪的观念是 Hippolyte Fizeau 在 1868 年最早提出的。他提出经由两个孔洞观察恒星的干涉,将可以提供恒星空间强度分布的资讯。从此以后,科学的干涉仪已经发展出多孔径干涉仪,可以将多个位置的影像彼此重叠。这些“斑点”的影像使用傅立叶分析综合——一种广泛用于审视天体的方法,包括研究联星、类星体、小行星和星系核。自 1990 年出现的自适应光学彻底改变了高分辨率天文学,同时,像是依巴谷、哈柏、和史匹哲等太空天文台,也产生其他重大的突破。另一项仪器,天文多波束接触器 (he Astronomical Multi-BEam Recombiner,AMBER),提供了新的观点。最为甚大望远镜的一部分,AMBER有能力同时结合3架望远镜,使研究人员可以实现微角秒的空间解析。此外,通过组合三个干涉仪#天文干涉仪取代两个,这是习惯用的传统干涉测量,AMBER 能让天文学家计算闭合相位-天文成像中的一个重要组成部分。
参宿四
目前的讨论围绕着波长-可见光、近红外线 (NIR)或中红外线 (MIR)-获得最精确的角度测量。最被广泛接受的解决方案,它的出现,是由加州大学柏克莱分校的太空实验室的天文学家在中红外线波段执行的 ISI。在历元 2000 年,这个团体,在约翰韦纳的领导下发表了一份论文,以一般不太被注意的中红外线,忽略任何可能存在的热点,显示参宿四均匀的盘面直径是 54.7 ± 0.3 mas。这篇论文也包含理论上承认的周边昏暗直径是 55.2 ± 0.5 mas-假设与地球的距离是 197.0 ± 45 pc,这相当于半径大约 5.5 AU 的外观 (1180 R☉)。不过,有鉴于角直径的误差在 ± 0.5 mas,与哈珀 (Harper) 的数值有 ± 45 pc 的误差结合在一起,光球的半径实际上可以小至 4.2 AU,或是大至 6.9 AU。
跨过大西洋,另一组由巴黎天文台佩兰 (Guy Perrin)领导的天文学家在 2004 年以红外线对有争议的参宿四光球半径做出 43.33 ± 0.04 mas 的精确测量。“佩兰的报告给了一个合理的剧本,可以一致性的解释从可见光到中红外线的观测。”这颗恒星看似很厚、温暖的大气层使短波的光线散射因而略微增加了直径,波长在 1.3 μm 以上的散射可以忽略不计。在 K 和 L 波段,上层的大气层几乎是透明的。在这些波长上看见的是传统的光球,所以直径是最小的。在中红外线,热辐射温暖了大气层增加了恒星的视直径。"这些参数还未获得天文学家广泛的支持。
使用 IOTA和 VLTI 在近红外线上的研究,强烈的支持佩兰的分析,直径的范围在 42.57 ~ 44.28 mas,最小的误差因子小于 0.04 mas。这次讨论的中心,是由查理斯汤所领导柏克莱团队在 2009 年的第二份论文,报告参宿四的直径从 1993 ~ 2009 年缩减了 15%,在 2008 年测量的角直径是 47.0 mas,与佩兰的估计相距不远。 不同于以前发表的大部份论文,这份研究专注于一个特定的波长 15 年的视野,早期的研究通常只持续 1 ~ 2 年,并且是在多种波长上,经常会产生截然不同的结果。缩减的角度分析相当于从 1993 年看见的 56.0 ± 0.1 到 2008 年的 47.0 ± 0.1 mas ,在 15 年内几乎缩减了 0.9 AU,或大约相当于 1000 km/h。天文学家都认为我们完全不知道这颗恒星膨胀和收缩的节奏,果真如此,循环的周期可能是什么,虽然汤认为不存在这样的周期,但它也可能长达数十年,其它可能的解释是光球层由于对流或因为不是球体因而稍微有些不对称,造成恒星绕着轴旋转时外观上的膨胀和收缩。当然,除非我们收集了周期的完整资料,我们不会知道 1993 年的 56.0 mas 是表现出恒星膨胀的最大值还是平均值,或是 2008 年的 47.0 事实上是个极小值。在我们得知确切的数值之前,我们可能还要继续观测 15 年或更久的时间 (2025 年),也就是说,相当于木星轨道半径的 5.5 AU,可能将持续很长的一段时间继续被视为它的平均半径。
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
街头篮球手游中锋攻略汇总 C位攻略大全 街头篮球手游中锋有什么技巧 中锋C技巧详解 php一个表单提交数据怎么区分开,隐藏域可以吗,如果可以怎么用。 梦见牙掉光了什么预兆 梦见牙齿掉完了是什么征兆 梦见牙齿全掉了是什么预兆 梦见一口牙全部掉了是什么预兆 教师年度考核不认课的领导班子成员,干的工作不少,怎样考核办法公平... 湖北省郧西县义务教育学校绩效工资实施办法绩效工资总量和水平的... 事业单位年底是否有绩效奖金的 宿舍六个人想做件衣服,印些什么比较有创意? 谁能帮我制作一个宿舍的群头像? 有人有一个宿舍七个人用的头像吗? 梦老公开锁开不开? 汉堡的肉饼怎么做Q 弹多汁? 蒸橙子需要多长时间 蒸橙子要多久好 如何使用电子门票_电子身份证可以买景区门票吗 网上哪个爱男孩网站好? 美式汉堡的多汁肉饼是如何制作的? 步步高家教机应用市场怎么切换到中学 "笔算"是什么意思? ...出现res://ieframe.dll/dnserrordiagoff_webOC.htm#网址。这是什 ... 有机肥和磷肥能在一给梨树施肥吗 ...网址显示res://ieframe.dll/dnserrordiagoff_webOC.htm#_百度... 补种大豆需要施肥么,第一次施肥了 解放碑在哪个市 什么样的照片用黑白、什么样的照片用彩色的? 为什么优酷韩国超人回来了2015年5月份到8月份的都没了? 少年歌行真人版有超前点播吗 网上有哪些比较好的爱男孩网站? 落地十万买SU∨有什么好的推荐? qq好友直播在哪? 神舟笔记本一开机显卡就80多度正常吗 梦见老公拿钥匙还我 自从和男友闹了矛盾后,这几天睡觉一直感觉呼吸难受,又睡不着,每天醒来... 参宿四的英文名称是什么? 美式汉堡的多汁肉饼是如何制作的? 2023高考300到400分的二本公立大学 汉堡的肉饼怎么做Q 弹多汁? 动力煤动力煤的特性 中石化柴油什么标准 冒黑烟涉及的专业名词解释 贝加尔湖是哪国的 花呗按什么还款 推进剂能量性能定义 怎样在EXCEL中快速的添加中括号? 深圳子延期建筑资质子2024年办理流程(深圳建筑资质怎么办) 没有宽带帐号和密码,无线路由怎么设置 江南天衣阁坐标在哪 阳朔早上去哪玩,阳朔千古风情景区酒店推荐