发布网友 发布时间:2024-10-08 05:51
共1个回答
热心网友 时间:2024-10-28 16:27
EX=0×θ2+1×2θ(1-θ)+2×θ2+3×(1-2θ)=3-4θ
故:θ=¼(3−EX)
θ的矩估计量为:θ=¼(3-X)
根据给定的样本观察值计算:X=1/8(3+1+3+0+3+1+2+3)=2
因此θ的矩估计值为:θ=¼(3-X)=¼
对于给定的样本值,
似然函数为:L(θ)=4θ²(1-θ)²(1-2θ)²
扩展资料:
求极大似然函数估计值的一般步骤:
1.写出似然函数;
2.对似然函数取对数,并整理;
3.求导数;
4.解似然方程。
所谓矩估计法,就是利用样本矩来估计总体中相应的参数。
最简单的矩估计法是用一阶样本原点矩来估计总体的期望而用二阶样本中心矩来估计总体的方差。
矩估计法也叫数字特征法,是求估计量的一种常用方法。
以样本矩的某一函数代替总体矩的同一函数来构造估计量的方法称为矩估计法。
因为样本可确定一个经验分布函数,由这个经验分布函数可确定样本的各阶矩。而样本又是从总体中随机抽取的,样本的分布及其各阶矩都在一定程度上反映了总体参数的特征。
当样本容量n无限增大时,样本矩与相应的总体矩任意接近的概率趋于1,因而可用样本矩代替总体矩构造一个含有未知参数的方程或方程组,方程的解就给出总体参数的估计量。
参考资料:百度百科-矩估计值-矩估计法