求曲线方程y=sinx,0≤ x≤π与y=0所围成的图形绕y轴旋转一周所得的旋 ...
发布网友
发布时间:2024-10-08 04:40
我来回答
共1个回答
热心网友
时间:2024-10-11 21:11
解:由题意知v(x)=π∫(0~π/2)sin^2(x)dx=π∫(0~π/2)[(1-cos2x)/2]dx=πx/2(0~π/2)-(1/4)sin2x(0~π/2)=
π/4
v(y)=
(π^3)/4-π∫(01)[(arcsiny)^2]dy
令arcsiny=u则y=sinu,所以dy=cosudu.有π∫(0~1)[(arcsiny)^2]dy
=π∫(0~π/2)(u^2)cosudu=π(u^2)sinu(0~π/2)-π∫(0~π/2)sinud(u^2)=π(u^2)sinu(0~π/2)+2π∫(0~π/2)udcosu=π(u^2)sinu(0~π/2)+2πucosu(0~π/2)-2π∫(0~π/2)cosudu=π(u^2)sinu(0π/2)+2πucosu(0~π/2)-2πsinu(0~π/2)=
(π
^3)/2-2
π
,所以v(x)=
(π
^3)/4-[
(π
^3)/2-2
π
]=2
π
-(π
^3)/4