...正方形ABCD中,点E、F分别在BC、CD上,∠EAF=45°,AE、AF分别于BD相 ...
发布网友
发布时间:2024-10-03 12:46
我来回答
共1个回答
热心网友
时间:2024-10-19 06:39
解答:证明:如图,
延长BC到G,使BG=DF连接AG,在AG截取AH=AN,连接MH、BH.
∵四边形ABCD为正方形,
∴AB=BC=CD=AD,∠4=∠5=45°,∠BAD=∠ADF=∠ABE=∠ABG=90°,
在RT△ABG和RT△ADF中,
AB=AD∠ABG=∠ADF=90°BG=DF,
∴RT△ABG≌RT△ADF(SAS),
∴∠1=∠2,∠7=∠G,AF=AG,
∴∠GAE=∠2+∠3=∠1+∠3=∠BAD-∠EAF=90°-45°=45°=∠EAF,
在△AMN和△AMH中,
AN=AH∠MAN=∠MAH=45°AM=AM,
∴△AMN≌△AMH(SAS),
∴MN=MH,
∵AF=AG,AN=AH,
∴FN=AF-AN=AG-AH=GH,
在△DFN和△BFH中,
DF=BG∠7=∠GFN=GH,
∴△DFN≌△BGH(SAS),
∴∠6=∠4=45°,DN=BH,
∴∠MBH=∠ABH+∠5=∠ANG-∠6+∠5=90°-45°+45°=90°
∴BM2+DN2=BM2+BH2=MH2=MN2,
在△AEF和△AEG中,
AE=AE∠EAF=∠EAG=45°AF=AG
∴△AEF≌△AEG(SAS),
∴EF=EG,
△CEF周长=CE+CF+EF=BC-BE+CD-DF+EF=BC+CD-(BE+BG)+EF=BC+CD-EC+EF=BC+CD-EF+EF=BC+CD.
热心网友
时间:2024-10-19 06:37
解答:证明:如图,
延长BC到G,使BG=DF连接AG,在AG截取AH=AN,连接MH、BH.
∵四边形ABCD为正方形,
∴AB=BC=CD=AD,∠4=∠5=45°,∠BAD=∠ADF=∠ABE=∠ABG=90°,
在RT△ABG和RT△ADF中,
AB=AD∠ABG=∠ADF=90°BG=DF,
∴RT△ABG≌RT△ADF(SAS),
∴∠1=∠2,∠7=∠G,AF=AG,
∴∠GAE=∠2+∠3=∠1+∠3=∠BAD-∠EAF=90°-45°=45°=∠EAF,
在△AMN和△AMH中,
AN=AH∠MAN=∠MAH=45°AM=AM,
∴△AMN≌△AMH(SAS),
∴MN=MH,
∵AF=AG,AN=AH,
∴FN=AF-AN=AG-AH=GH,
在△DFN和△BFH中,
DF=BG∠7=∠GFN=GH,
∴△DFN≌△BGH(SAS),
∴∠6=∠4=45°,DN=BH,
∴∠MBH=∠ABH+∠5=∠ANG-∠6+∠5=90°-45°+45°=90°
∴BM2+DN2=BM2+BH2=MH2=MN2,
在△AEF和△AEG中,
AE=AE∠EAF=∠EAG=45°AF=AG
∴△AEF≌△AEG(SAS),
∴EF=EG,
△CEF周长=CE+CF+EF=BC-BE+CD-DF+EF=BC+CD-(BE+BG)+EF=BC+CD-EC+EF=BC+CD-EF+EF=BC+CD.