智能语音对话原理
发布网友
发布时间:2024-10-04 23:47
我来回答
共1个回答
热心网友
时间:2024-10-12 01:10
智能语音对话的技术可以划分为三个模块:语音识别(Automatic Speech Recognition)、自然语言处理(Natural Language Processing)和语音合成(Text-To-Speech)。
语音识别技术的核心是建立声学模型和语言模型。声学模型通过大量用户的原始声音数据进行训练,提取语音特征参数,形成模型数据库,以识别不同人的发音差异。语言模型则包括语法网络或统计方法,通过抽象建模语言客观事实,优化声学模型获取的非逻辑词,使其文本通顺并精准。最后通过声学信号编码,转换为可识别的文本。
自然语言处理技术涵盖了文本预处理、词法分析、句法分析、语义理解等关键环节,以及更多相关技术。文本预处理侧重去除噪音,标准化文本,并进行词汇归一化处理,统一表示同一个词的不同形式。词法分析包括分词,即将文本分割为关键词或独立词;实体识别,则提取特定类别的实体信息,如人名、地名等,帮助解析用户意图。文本分类依据文档主题进行分类,常用TF-IDF算法实现。文本相似度处理用于计算文本间距离,以匹配搜索结果。情感倾向分析则对文本情感进行分类,以及观点抽取,即识别文本中的观点词。
语音合成模块主要涉及文本正则化、文本结构分析和文本转音素。文本正则化消除非标准词歧义,将非汉字标点、数字转化为汉字。文本结构分析对输入文本进行语法和语义解析,识别词法、句法和语义结构。文本转音素将文本转化为语音特征,如拼音、音高、音长和音色,特别是处理中文的多音字问题,依据辅助信息和算法确定正确的读音,如分词和词性。
音素是语音分析的基础单位,按照音节中的发音动作分析,可分为元音和辅音。韵律预测在语音合成中决定朗读节奏,即抑扬顿挫,一般简化系统仅预测句子停顿信息,如字读后是否需停顿及其持续时间。