焦点为(0,-6).(0,6),且经过点(2,-5),求双曲线的标准方程
发布网友
发布时间:2024-10-04 20:45
我来回答
共1个回答
热心网友
时间:2024-10-05 00:42
因为该双曲线的焦点在y轴上,
设该双曲线的方程为y²/a²-x²/b²=1
两个焦点坐标(0,c),(0,-c)为(0,6),(0,-6),则c=6
由a²+b²=c²有a²+b²=36得b²=36-a²
代入点(2,-5)有25/a²-4/b²=1
25/a²-4/(36-a²)=1
25(36-a²)-4a²=a²(36-a²)
整理并分解因式,得(a²-20)(a²-45)=0
得a²=20,(b²=36-45<0,则舍去a²=45)
b²=c²-a²=36-20=16
该双曲线的方程为y²/20-x²/16=1
请采纳