如图,已知△ABC和△ABD均为等腰直角三角形,∠ACB=∠BAD=90°,点P为...
发布网友
发布时间:2024-10-05 04:22
我来回答
共1个回答
热心网友
时间:2024-10-05 08:53
证明:(1)∵PE⊥PB,
∴∠EPB=90°,
∵∠BAD=90°,
∴∠AEP=90°-∠1,∠ABP=90°-∠2,
∵∠1=∠2,
∴∠AEP=∠ABP;
(2)PB=PE,
如图3,过P作PM⊥AC交AB与M,
在等腰直角三角形ABC中,∠BAC=45°,
∴∠PAM=∠AMP=45°,
∴PA=PM,
∵∠PAE=45°+90°=135°,∠PMB=180°-45°=135°,
∴∠PAE=∠PMB,
在△AEP和△MBP中∠PAE=∠PMB∠AEP=∠ABPAP=PM,
∴△APE≌△MPB(AAS),
∴PB=PE;
(3)成立;
如图4,过P作PM⊥AB于点M,作PN⊥DA交DA延长线于点N,
∵∠PAB=∠PAN=45°,
∴PM=PN,
∵∠N=∠PMA=∠MAE=90°,
∴四边形ANPM是矩形,∴∠MPN=90°.
∵∠3+∠MPE=∠4+∠MPE=90°,
∴∠3=∠4,
∵∠PMB=∠N=90°,
在△PBM和△PEN中∠3=∠4PM=PN∠PMB=∠N,
∴△PBM≌△PEN(ASA),
∴PB=PE.