已知曲线C是到点P(-1/2 3/8 )和到直线y= - 5/8距离相等的点的轨迹
发布网友
发布时间:2024-10-10 14:15
我来回答
共2个回答
热心网友
时间:2024-10-15 18:48
曲线C是到点P(-1/2 3/8 )和到直线y= - 5/8距离相等的点的轨迹
则该曲线是抛物线x^2=2y按向量(-1/2,-1/8)平移后得到
用向量方法得到曲线C方程为(x+1/2)^2=2y+1/4
另y=0解得与x轴交点坐标分别是(-1,0)(0,0)
Q是其中一个
本人不才 向下请求其他高人帮忙吧
热心网友
时间:2024-10-15 18:46
(1)曲线C轨迹是以P(-1/2,3/8)为焦点,以直线y=-5/8为准线的抛物线,过P点做直线y=-5/8的垂线,垂线段长3/8+5/8=1,垂线段中点(-1/2,-1/8)即为抛物线顶点。
抛物线方程为:(x+1/2)²=2(y+1/8),整理得到y=(x²+x)/2
(2)设曲线C上任意点M的坐标为(m,n),则n=(m²+m)/2
设直线l方程为y=k(x+1),由于MA⊥l,所以MA方程为y=(-1/k)(x-m)+n
与直线l方程联立解得A点横坐标a=(m+nk-k²)/(1+k²),代入直线上两点距离公式
得:|QA|= √(1+k²)|a+1|=|m+nk+1|/√(1+k²)
代入n=(m²+m)/2得:|QA|=k|(m+1)(m+2/k)|/[2√(1+k²)]
因为MB⊥X轴,所以B点横坐标b=m,代入直线上两点距离公式得:
|QB|²=(1+k²)(m+1)²
所以,当2/k=1,即k=2时,|QB|²/|QA|为常数
此时直线l方程为y=2x+2