设动点P ,Q的坐标分别是(a,b),(c,d)且满足c=3a+2b+1,d=a+4b-3.
发布网友
发布时间:2024-10-10 07:58
我来回答
共1个回答
热心网友
时间:2024-10-23 13:20
这样的直线是存在的,证明如下:
设直线l的方程为mx+ny+p=0,依题意
ma+nb+p=0,①
m(3a+2b+1)+n(a+4b-3)+p=0,②
②变为(3m+n)a+(2m+4n)b+m-3n+p=0.③
①、③表示同一条直线,
∴(3m+n)/m=(2m+4n)/n=(m-3n+p)/p.
由前者,3mn+n^2=2m^2+4mn,
2m^2+mn-n^2=0,
∴m=-n,或m=n/2.
把m=-n代入后者,得2=(-4n+p)/p,p=4n.
把m=n/2代入后者,得5=(-2.5n+p)/p,p=-5n/8.
∴l的方程为x-y-4=0,或4x+8y-5=0.