发布网友 发布时间:2022-05-08 18:51
共1个回答
热心网友 时间:2023-06-23 18:57
PDE是偏微分方程。
PDE包含未知函数的偏导数(或偏微分)的方程。方程中所出现未知函数偏导数的最高阶数,称为该方程的阶。在数学、物理及工程技术中应用最广泛的,是二阶偏微分方程,习惯上把这些方程称为数学物理方程。
二阶线性与非线性偏微分方程始终是重要的研究对象。这类方程通常划分成椭圆型、双曲型与抛物型三类,围绕这三类方程所建立和讨论的基本问题是各种边值问题、初值问题与混合问题之解的存在性、唯一性、稳定性及渐近性等性质以及求解方法。
近代物理学、力学及工程技术的发展产生出许多新的非线性问题,它们常常导引出除上述方程之外的称为混合型方程、退化型方程及高阶偏微分方程等有关问题,这些问题通常十分复杂具有较大的难度,至今为止,一直是重要的研究课题。
扩展资料
偏微分方程理论研究一个方程(组)是否有满足某些补充条件的解(解的存在性),有多少个解(解的惟一性或自由度),解的各种性质以及求解方法等等,并且还要尽可能地用偏微分方程来解释和预见自然现象以及把它用之于各门科学和工程技术。
偏微分方程理论的形成和发展都与物理学和其他自然科学的发展密切相关,并彼此促进和推动。其他数学分支,如分析学、几何学、代数学、拓扑学等理论的发展也都给予偏微分方程以深刻的影响。
参考资料来源:百度百科-偏微分方程