函数、幂函数、对数函数、三角函数、反函数以及指数函数指数函数等,全部函数图像性质以及定义域相关知识
发布网友
发布时间:2022-05-08 01:07
我来回答
共1个回答
热心网友
时间:2023-11-22 23:37
幂函数的定义域是最复杂的,y=x^a中,a若为无理数,涉及到实数连续统的极为深刻的知识。这里就不说了。
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
指数函f(x)=a^x,定义域数是全体实数。
对数函数f(x)=lgx,定义域是所有正数。即(0,-∞)
三角函数,f(x)=sinx,定义域全体实数,他的反函数arcsinx,定义域[-1,1]
f(x)=cos一样,
f(x)=tanx,定义域,x≠kπ/2,他的反函数是根据f(x)=tanx的定义域确定的。所以定义域也不同。
热心网友
时间:2023-11-22 23:37
幂函数的定义域是最复杂的,y=x^a中,a若为无理数,涉及到实数连续统的极为深刻的知识。这里就不说了。
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
指数函f(x)=a^x,定义域数是全体实数。
对数函数f(x)=lgx,定义域是所有正数。即(0,-∞)
三角函数,f(x)=sinx,定义域全体实数,他的反函数arcsinx,定义域[-1,1]
f(x)=cos一样,
f(x)=tanx,定义域,x≠kπ/2,他的反函数是根据f(x)=tanx的定义域确定的。所以定义域也不同。
热心网友
时间:2023-11-22 23:37
幂函数的定义域是最复杂的,y=x^a中,a若为无理数,涉及到实数连续统的极为深刻的知识。这里就不说了。
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
指数函f(x)=a^x,定义域数是全体实数。
对数函数f(x)=lgx,定义域是所有正数。即(0,-∞)
三角函数,f(x)=sinx,定义域全体实数,他的反函数arcsinx,定义域[-1,1]
f(x)=cos一样,
f(x)=tanx,定义域,x≠kπ/2,他的反函数是根据f(x)=tanx的定义域确定的。所以定义域也不同。