发布网友 发布时间:2022-05-10 20:43
共5个回答
热心网友 时间:2023-10-30 06:09
你图里第一个证明就可以是正确的了,因为最后一步不需要用到洛必达,只需要用到e^x-1与x是等价无穷小。仔细看高数课本,逻辑应该是:利用(1+x)^(1/x)极限是e(证明过程未涉及导数),证明ln(x+1)与x是等价无穷小,然后证明e^x-1与x是等价无穷小即可,无需用洛必达法则。
热心网友 时间:2023-10-30 06:09
y‘=[e^(-x)]'
=(-x)'*e^(-x)=-e^(-x)
答题解析:
复合函数求导——先对内层求导,再对外层求导
拓展资料:
基本函数的求导公式
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
热心网友 时间:2023-10-30 06:10
可以参考下面两张图片的证明。这个是先证明log_ax的导数,然后再利用函数和反函数导数之间的关系证明的。内容来自华东师范大学出版的第三版的数学分析。
热心网友 时间:2023-10-30 06:10
利用特殊极限
追问妙啊
热心网友 时间:2023-10-30 06:11
这个是根据定义求导,但是过程比较麻烦,一般都是要求记住公式。追问证一下